Experimental and theoretical investigation on corrosion inhibitive properties of steel rebar by a newly designed environmentally friendly inhibitor formula | |
Feng, Lijuan1,2; Yang, Huaiyu2; Cui, Xin1; Chen, Di1; Li, Guofu1 | |
通讯作者 | Feng, Lijuan(Ljfeng@alum.imr.ac.cn) ; Yang, Huaiyu() |
2018 | |
发表期刊 | RSC ADVANCES
![]() |
ISSN | 2046-2069 |
卷号 | 8期号:12页码:6507-6518 |
摘要 | In order to mitigate the corrosion of steel rebar in concrete, a new environmentally friendly corrosion inhibitor formula (WKI) was designed and the corrosion inhibitive effects of WKI on steel rebar were studied by gravimetric method, electrochemical impendence spectroscopy (EIS), potentiodynamic polarization and Mott-Schottky scanning in simulated concrete pore solution. Furthermore, surface analysis and quantum chemical calculations were conducted in order to illustrate the corrosion inhibitive mechanism. The results indicate that WKI exhibits excellent corrosion inhibitive activities on steel rebar in simulated concrete pore solution. By the presence of WKI, local corrosion was significantly suppressed and no pitting could be detected during the whole experimental period. The total corrosion resistance was increased from 5469 Omega cm(2) to 64 440 Omega cm(2) and the corrosion current density was reduced from 3.23 rho A cm(-2) to 0.21 mu A cm(-2) for the sample immersed in the corrosion medium for 7 d with WKI. The corrosion potential of the steel rebar electrode moved to a higher level and the charge transfer resistance increased, indicating that the anti-corrosion properties of the steel rebar were enhanced. The corrosion inhibitive mechanism of WKI can be attributed to the fact that it can promote the formation of a passive film and reduce its defect concentration via its adsorption and interaction with the metal surface, consequently inhibiting the corrosion of steel rebar caused by chloride ions. |
资助者 | Project of Shandong Province Higher Educational Science and Technology Program ; Distinguished Middle-Aged and Young Scientist Encourage and Reward Foundation of Shandong Province ; Doctoral Fund Project of Weifang University of Science and Technology |
DOI | 10.1039/c7ra13045g |
收录类别 | SCI |
语种 | 英语 |
资助项目 | Project of Shandong Province Higher Educational Science and Technology Program[J15LA62] ; Distinguished Middle-Aged and Young Scientist Encourage and Reward Foundation of Shandong Province[ZR2016HB24] ; Doctoral Fund Project of Weifang University of Science and Technology[2017BS06] |
WOS研究方向 | Chemistry |
WOS类目 | Chemistry, Multidisciplinary |
WOS记录号 | WOS:000425034000039 |
出版者 | ROYAL SOC CHEMISTRY |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.imr.ac.cn/handle/321006/127450 |
专题 | 中国科学院金属研究所 |
通讯作者 | Feng, Lijuan; Yang, Huaiyu |
作者单位 | 1.Weifang Univ Sci & Technol, Shandong Peninsula Engn Res Ctr Comprehens Brine, Shouguang 262700, Weifang, Peoples R China 2.Chinese Acad Sci, Insititute Met Res, State Key Lab Corros & Protect, Shenyang 110016, Liaoning, Peoples R China |
推荐引用方式 GB/T 7714 | Feng, Lijuan,Yang, Huaiyu,Cui, Xin,et al. Experimental and theoretical investigation on corrosion inhibitive properties of steel rebar by a newly designed environmentally friendly inhibitor formula[J]. RSC ADVANCES,2018,8(12):6507-6518. |
APA | Feng, Lijuan,Yang, Huaiyu,Cui, Xin,Chen, Di,&Li, Guofu.(2018).Experimental and theoretical investigation on corrosion inhibitive properties of steel rebar by a newly designed environmentally friendly inhibitor formula.RSC ADVANCES,8(12),6507-6518. |
MLA | Feng, Lijuan,et al."Experimental and theoretical investigation on corrosion inhibitive properties of steel rebar by a newly designed environmentally friendly inhibitor formula".RSC ADVANCES 8.12(2018):6507-6518. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论