A multi-mode real-time terrain parameter estimation method for wheeled motion control of mobile robots | |
Li, Yuankai1,2; Ding, Liang3; Zheng, Zhizhong4; Yang, Qizhi2,5; Zhao, Xingang2; Liu, Guangjun6 | |
通讯作者 | Li, Yuankai(yuankai.li@uestc.edu.cn) ; Ding, Liang(liangding@hit.edu.cn) |
2018-05-01 | |
发表期刊 | MECHANICAL SYSTEMS AND SIGNAL PROCESSING
![]() |
ISSN | 0888-3270 |
卷号 | 104页码:758-775 |
摘要 | For motion control of wheeled planetary rovers traversing on deformable terrain, real-time terrain parameter estimation is critical in modeling the wheel-terrain interaction and compensating the effect of wheel slipping. A multi-mode real-time estimation method is proposed in this paper to achieve accurate terrain parameter estimation. The proposed method is composed of an inner layer for real-time filtering and an outer layer for online update. In the inner layer, sinkage exponent and internal frictional angle, which have higher sensitivity than that of the other terrain parameters to wheel-terrain interaction forces, are estimated in real time by using an adaptive robust extended Kalman filter (AREKF), whereas the other parameters are fixed with nominal values. The inner layer result can help synthesize the current wheel-terrain contact forces with adequate precision, but has limited prediction capability for time-variable wheel slipping. To improve estimation accuracy of the result from the inner layer, an otter layer based on recursive Gauss-Newton (RGN) algorithm is introduced to refine the result of real-time filtering according to the innovation contained in the history data. With the two-layer structure, the proposed method can work in three fundamental estimation modes: EKF, REKF and RGN, making the method applicable for flat, rough and non-Uniform terrains. Simulations have demonstrated the effectiveness of the proposed method under three terrain types, showing the advantages of introducing the two-layer structure. (C) 2017 Elsevier Ltd. All rights reserved. |
关键词 | Terrain parameters Real-time estimation Multi-mode recursive Gauss-Newton method adaptive robust extended Kalman filter |
资助者 | Natural Sciences and Engineering Research Council (NSERC) ; Canada Research Chair (CRC) ; China State Key Laboratory of Robotics ; SRF ; SEM ; China Fundamental Research Funds for the Central Universities |
DOI | 10.1016/j.ymssp.2017.11.038 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | Natural Sciences and Engineering Research Council (NSERC) ; Canada Research Chair (CRC) ; China State Key Laboratory of Robotics[2013-O08] ; SRF ; SEM ; China Fundamental Research Funds for the Central Universities[ZYGX-2014-J098] |
WOS研究方向 | Engineering |
WOS类目 | Engineering, Mechanical |
WOS记录号 | WOS:000423652800049 |
出版者 | ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.imr.ac.cn/handle/321006/127555 |
专题 | 中国科学院金属研究所 |
通讯作者 | Li, Yuankai; Ding, Liang |
作者单位 | 1.Univ Elect Sci & Technol China, Sch Aeronaut & Astronaut, Chengdu, Sichuan, Peoples R China 2.Chinese Acad Sci, Shenyang Inst Automat, Shenyang, Liaoning, Peoples R China 3.Harbin Inst Technol, State Key Lab Robot & Syst, Harbin, Heilongjiang, Peoples R China 4.Natl Engn & Technol Res Ctr Digital Switching Sys, Zhengzhou, Henan, Peoples R China 5.Jiangsu Univ, Sch Mech Engn, Zhenjiang, Peoples R China 6.Ryerson Univ, Dept Aerosp Engn, Toronto, ON, Canada |
推荐引用方式 GB/T 7714 | Li, Yuankai,Ding, Liang,Zheng, Zhizhong,et al. A multi-mode real-time terrain parameter estimation method for wheeled motion control of mobile robots[J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING,2018,104:758-775. |
APA | Li, Yuankai,Ding, Liang,Zheng, Zhizhong,Yang, Qizhi,Zhao, Xingang,&Liu, Guangjun.(2018).A multi-mode real-time terrain parameter estimation method for wheeled motion control of mobile robots.MECHANICAL SYSTEMS AND SIGNAL PROCESSING,104,758-775. |
MLA | Li, Yuankai,et al."A multi-mode real-time terrain parameter estimation method for wheeled motion control of mobile robots".MECHANICAL SYSTEMS AND SIGNAL PROCESSING 104(2018):758-775. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论