IMR OpenIR
Data-driven process decomposition and robust online distributed modelling for large-scale processes
Zhang Shu1; Li Lijuan1; Yao Lijuan1; Yang Shipin1; Zou Tao2
通讯作者Li Lijuan(ljli@njtech.edu.cn)
2018
发表期刊INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE
ISSN0020-7721
卷号49期号:3页码:449-463
摘要With the increasing attention of networked control, system decomposition and distributed models show significant importance in the implementation of model-based control strategy. In this paper, a data-driven system decomposition and online distributed subsystem modelling algorithm was proposed for large-scale chemical processes. The key controlled variables are first partitioned by affinity propagation clustering algorithm into several clusters. Each cluster can be regarded as a subsystem. Then the inputs of each subsystem are selected by offline canonical correlation analysis between all process variables and its controlled variables. Process decomposition is then realised after the screening of input and output variables. When the system decomposition is finished, the online subsystem modelling can be carried out by recursively block-wise renewing the samples. The proposed algorithm was applied in the Tennessee Eastman process and the validity was verified.
关键词Canonical correlation analysis affinity propagation clustering block-wise RPLS model reduction model-predictive control process control parameter identification
资助者National Natural Science Foundation of China ; Research Innovation Program for College Graduates of Jiangsu Province
DOI10.1080/00207721.2017.1406551
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61203072] ; National Natural Science Foundation of China[61403190] ; National Natural Science Foundation of China[61773366] ; Research Innovation Program for College Graduates of Jiangsu Province[KYLX16 0598]
WOS研究方向Automation & Control Systems ; Computer Science ; Operations Research & Management Science
WOS类目Automation & Control Systems ; Computer Science, Theory & Methods ; Operations Research & Management Science
WOS记录号WOS:000428635000001
出版者TAYLOR & FRANCIS LTD
引用统计
被引频次:4[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/127610
专题中国科学院金属研究所
通讯作者Li Lijuan
作者单位1.Nanjing Tech Univ, Coll Elect Engn & Control Sci, Ind Syst & Automat Dept, Nanjing, Jiangsu, Peoples R China
2.Chinese Acad Sci, Shenyang Inst Automat, Ind Control Networks & Syst Dept, Shenyang, Liaoning, Peoples R China
推荐引用方式
GB/T 7714
Zhang Shu,Li Lijuan,Yao Lijuan,et al. Data-driven process decomposition and robust online distributed modelling for large-scale processes[J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE,2018,49(3):449-463.
APA Zhang Shu,Li Lijuan,Yao Lijuan,Yang Shipin,&Zou Tao.(2018).Data-driven process decomposition and robust online distributed modelling for large-scale processes.INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE,49(3),449-463.
MLA Zhang Shu,et al."Data-driven process decomposition and robust online distributed modelling for large-scale processes".INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE 49.3(2018):449-463.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang Shu]的文章
[Li Lijuan]的文章
[Yao Lijuan]的文章
百度学术
百度学术中相似的文章
[Zhang Shu]的文章
[Li Lijuan]的文章
[Yao Lijuan]的文章
必应学术
必应学术中相似的文章
[Zhang Shu]的文章
[Li Lijuan]的文章
[Yao Lijuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。