IMR OpenIR
Methods and datasets on semantic segmentation: A review
Yu, Hongshan1,2; Yang, Zhengeng1; Tan, Lei1,3; Wang, Yaonan1; Sun, Wei1; Sun, Mingui4; Tang, Yandong5
通讯作者Yu, Hongshan(yuhongshancn@hotmail.com)
2018-08-23
发表期刊NEUROCOMPUTING
ISSN0925-2312
卷号304页码:82-103
摘要Semantic segmentation, also called scene labeling, refers to the process of assigning a semantic label (e.g. car, people, and road) to each pixel of an image. It is an essential data processing step for robots and other unmanned systems to understand the surrounding scene. Despite decades of efforts, semantic segmentation is still a very challenging task due to large variations in natural scenes. In this paper, we provide a systematic review of recent advances in this field. In particular, three categories of methods are reviewed and compared, including those based on hand-engineered features, learned features and weakly supervised learning. In addition, we describe a number of popular datasets aiming for facilitating the development of new segmentation algorithms. In order to demonstrate the advantages and disadvantages of different semantic segmentation models, we conduct a series of comparisons between them. Deep discussions about the comparisons are also provided. Finally, this review is concluded by discussing future directions and challenges in this important field of research. (c) 2018 Elsevier B.V. All rights reserved.
关键词Semantic segmentation Convolutional neural network Markov random fields Weakly supervised method 3D point clouds labeling
资助者National Natural Science Foundation of China ; National Key Technology Support Program ; National Key Scientific Instrument and Equipment Development Project of China ; Hunan Key Laboratory of Intelligent Robot Technology in Electronic Manufacturing ; Science and Technology Plan Project of Shenzhen City ; Key Project of Science and Technology Plan of Guangdong Province ; Open foundation of State Key Laboratory of Robotics of China ; National Institutes of Health of the United States
DOI10.1016/j.neucom.2018.03.037
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61573135] ; National Key Technology Support Program[2015BAF11B01] ; National Key Scientific Instrument and Equipment Development Project of China[2013YQ140517] ; Hunan Key Laboratory of Intelligent Robot Technology in Electronic Manufacturing[2018001] ; Science and Technology Plan Project of Shenzhen City[JCYJ20170306141557198] ; Key Project of Science and Technology Plan of Guangdong Province[2013B011301014] ; Open foundation of State Key Laboratory of Robotics of China[2013O09] ; National Institutes of Health of the United States[R01CA165255] ; National Institutes of Health of the United States[R21CA172864]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000432492800006
出版者ELSEVIER SCIENCE BV
引用统计
被引频次:145[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/128471
专题中国科学院金属研究所
通讯作者Yu, Hongshan
作者单位1.Hunan Univ, Coll Elect & Informat Engn, Natl Engn Lab Robot Visual Percept & Control Tech, Changsha, Hunan, Peoples R China
2.Hunan Univ, Shenzhen Res Inst, Shenzhen 518057, Guangdong, Peoples R China
3.Carnegie Mellon Univ, Robot Inst, Pittsburgh, PA 15213 USA
4.Univ Pittsburgh, Lab Computat Neurosci, Pittsburgh, PA USA
5.Chinese Acad Sci, Shenyang Inst Automat, Shenyang, Liaoning, Peoples R China
推荐引用方式
GB/T 7714
Yu, Hongshan,Yang, Zhengeng,Tan, Lei,et al. Methods and datasets on semantic segmentation: A review[J]. NEUROCOMPUTING,2018,304:82-103.
APA Yu, Hongshan.,Yang, Zhengeng.,Tan, Lei.,Wang, Yaonan.,Sun, Wei.,...&Tang, Yandong.(2018).Methods and datasets on semantic segmentation: A review.NEUROCOMPUTING,304,82-103.
MLA Yu, Hongshan,et al."Methods and datasets on semantic segmentation: A review".NEUROCOMPUTING 304(2018):82-103.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yu, Hongshan]的文章
[Yang, Zhengeng]的文章
[Tan, Lei]的文章
百度学术
百度学术中相似的文章
[Yu, Hongshan]的文章
[Yang, Zhengeng]的文章
[Tan, Lei]的文章
必应学术
必应学术中相似的文章
[Yu, Hongshan]的文章
[Yang, Zhengeng]的文章
[Tan, Lei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。