IMR OpenIR
Kernel sparse representation on Grassmann manifolds for visual clustering
Liu, Tianci1,2,3; Shi, Zelin1,3; Liu, Yunpeng1,3
通讯作者Liu, Tianci(liutianci@sia.cn)
2018-05-01
发表期刊OPTICAL ENGINEERING
ISSN0091-3286
卷号57期号:5页码:10
摘要Image sets and videos can be modeled as subspaces, which are actually points on Grassmann manifolds. Clustering of such visual data lying on Grassmann manifolds is a hard issue based on the fact that the state-of-the-art methods are only applied to vector space instead of non-Euclidean geometry. Although there exist some clustering methods for manifolds, the desirable method for clustering on Grassmann manifolds is lacking. We propose an algorithm termed as kernel sparse subspace clustering on the Grassmann manifold, which embeds the Grassmann manifold into a reproducing kernel Hilbert space by an appropriate Gaussian projection kernel. This kernel is applied to obtain kernel sparse representations of data on Grassmann manifolds utilizing the self-expressive property and exploiting the intrinsic Riemannian geometry within data. Although the Grassmann manifold is compact, the geodesic distances between Grassmann points are well measured by kernel sparse representations based on linear reconstruction. With the kernel sparse representations, clustering results of experiments on three prevalent public datasets outperform a number of existing algorithms and the robustness of our algorithm is demonstrated as well. (C) 2018 Society of Photo-Optical Instrumentation Engineers (SPIE)
关键词Grassmann manifold visual clustering sparse representation kernel method
资助者National Natural Science Foundation of China ; Common Technical Project of Equipment Development Department
DOI10.1117/1.OE.57.5.053104
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61540069] ; Common Technical Project of Equipment Development Department[Y6K4250401]
WOS研究方向Optics
WOS类目Optics
WOS记录号WOS:000435435300013
出版者SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/128650
专题中国科学院金属研究所
通讯作者Liu, Tianci
作者单位1.Chinese Acad Sci, Shenyang Inst Automat, Shenyang, Liaoning, Peoples R China
2.Univ Chinese Acad Sci, Beijing, Peoples R China
3.Key Lab Optoelect Informat Proc, Shenyang, Liaoning, Peoples R China
推荐引用方式
GB/T 7714
Liu, Tianci,Shi, Zelin,Liu, Yunpeng. Kernel sparse representation on Grassmann manifolds for visual clustering[J]. OPTICAL ENGINEERING,2018,57(5):10.
APA Liu, Tianci,Shi, Zelin,&Liu, Yunpeng.(2018).Kernel sparse representation on Grassmann manifolds for visual clustering.OPTICAL ENGINEERING,57(5),10.
MLA Liu, Tianci,et al."Kernel sparse representation on Grassmann manifolds for visual clustering".OPTICAL ENGINEERING 57.5(2018):10.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Tianci]的文章
[Shi, Zelin]的文章
[Liu, Yunpeng]的文章
百度学术
百度学术中相似的文章
[Liu, Tianci]的文章
[Shi, Zelin]的文章
[Liu, Yunpeng]的文章
必应学术
必应学术中相似的文章
[Liu, Tianci]的文章
[Shi, Zelin]的文章
[Liu, Yunpeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。