IMR OpenIR
Atomically Dispersed Fe-N-x/C Electrocatalyst Boosts Oxygen Catalysis via a New Metal-Organic Polymer Supramolecule Strategy
Miao, Zhengpei1; Wang, Xiaoming2; Tsai, Meng-Che2; Jin, Qianqian3; Liang, Jiashun1; Ma, Feng1; Wang, Tanyuan1; Zheng, Shijian3; Hwang, Bing-Joe2; Huang, Yunhui1; Guo, Shaojun4,5; Li, Qing1
Corresponding AuthorGuo, Shaojun(guosj@pku.edu.cn) ; Li, Qing(qing_li@hust.edu.cn)
2018-08-27
Source PublicationADVANCED ENERGY MATERIALS
ISSN1614-6832
Volume8Issue:24Pages:8
AbstractThe development of high-performance oxygen reduction reaction (ORR) catalysts derived from non-Pt group metals (non-PGMs) is urgent for the wide applications of proton exchange membrane fuel cells (PEMFCs). In this work, a facile and cost-efficient supramolecular route is developed for making non-PGM ORR catalyst with atomically dispersed Fe-N-x/C sites through pyrolyzing the metal-organic polymer coordinative hydrogel formed between Fe3+ and -L-guluronate blocks of sodium alginate (SA). High-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and X-ray absorption spectroscopy (XAS) verify that Fe atoms achieve atomic-level dispersion on the obtained SA-Fe-N nanosheets and a possible fourfold coordination with N atoms. The best-performing SA-Fe-N catalyst exhibits excellent ORR activity with half-wave potential (E-1/2) of 0.812 and 0.910 V versus the reversible hydrogen electrode (RHE) in 0.5 (M) H2SO4 and 0.1 m KOH, respectively, along with respectable durability. Such performance surpasses that of most reported non-PGM ORR catalysts. Density functional theory calculations suggest that the relieved passivation effect of OH* on Fe-N-4/C structure leads to its superior ORR activity to Pt/C in alkaline solution. The work demonstrates a novel strategy for developing high-performance non-PGM ORR electrocatalysts with atomically dispersed and stable M-N-x coordination sites in both acidic and alkaline media.
Keywordelectrocatalysis energy conversion fuel cells oxygen reduction reaction single atom catalyst
Funding OrganizationNational 1000 Young Talents Program of China ; National Nature Science Foundation of China ; National Materials Genome Project
DOI10.1002/aenm.201801226
Indexed BySCI
Language英语
Funding ProjectNational 1000 Young Talents Program of China ; National Nature Science Foundation of China[21603078] ; National Materials Genome Project[2016YFB0700600]
WOS Research AreaChemistry ; Energy & Fuels ; Materials Science ; Physics
WOS SubjectChemistry, Physical ; Energy & Fuels ; Materials Science, Multidisciplinary ; Physics, Applied ; Physics, Condensed Matter
WOS IDWOS:000442731100020
PublisherWILEY-V C H VERLAG GMBH
Citation statistics
Cited Times:213[WOS]   [WOS Record]     [Related Records in WOS]
Document Type期刊论文
Identifierhttp://ir.imr.ac.cn/handle/321006/129130
Collection中国科学院金属研究所
Corresponding AuthorGuo, Shaojun; Li, Qing
Affiliation1.Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, Wuhan 430074, Hubei, Peoples R China
2.Natl Taiwan Univ Sci & Technol, Dept Chem Engn, Taipei 10607, Taiwan
3.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Liaoning, Peoples R China
4.Peking Univ, Dept Mat Sci & Engn, Beijing 100871, Peoples R China
5.Peking Univ, BIC ESAT Coll Engn, Beijing 100871, Peoples R China
Recommended Citation
GB/T 7714
Miao, Zhengpei,Wang, Xiaoming,Tsai, Meng-Che,et al. Atomically Dispersed Fe-N-x/C Electrocatalyst Boosts Oxygen Catalysis via a New Metal-Organic Polymer Supramolecule Strategy[J]. ADVANCED ENERGY MATERIALS,2018,8(24):8.
APA Miao, Zhengpei.,Wang, Xiaoming.,Tsai, Meng-Che.,Jin, Qianqian.,Liang, Jiashun.,...&Li, Qing.(2018).Atomically Dispersed Fe-N-x/C Electrocatalyst Boosts Oxygen Catalysis via a New Metal-Organic Polymer Supramolecule Strategy.ADVANCED ENERGY MATERIALS,8(24),8.
MLA Miao, Zhengpei,et al."Atomically Dispersed Fe-N-x/C Electrocatalyst Boosts Oxygen Catalysis via a New Metal-Organic Polymer Supramolecule Strategy".ADVANCED ENERGY MATERIALS 8.24(2018):8.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Miao, Zhengpei]'s Articles
[Wang, Xiaoming]'s Articles
[Tsai, Meng-Che]'s Articles
Baidu academic
Similar articles in Baidu academic
[Miao, Zhengpei]'s Articles
[Wang, Xiaoming]'s Articles
[Tsai, Meng-Che]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Miao, Zhengpei]'s Articles
[Wang, Xiaoming]'s Articles
[Tsai, Meng-Che]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.