IMR OpenIR
Fault Diagnosis and Location Method for Active Distribution Network Based on Artificial Neural Network
Zhang Tong1; Sun Lanxiang2,3,4; Liu Jianchang1; Yu Haibin2,3,4; Zhou Xiaoming5; Gao Lin6; Zhang Yingwei1
通讯作者Sun Lanxiang()
2018
发表期刊ELECTRIC POWER COMPONENTS AND SYSTEMS
ISSN1532-5008
卷号46期号:9页码:985-996
摘要A fault diagnosis and location method of artificial neural network (ANN) based on regularized radial basis function (RRBF) is proposed. The phase angle feature of fault voltage and current signal is analyzed. The proposed method adopts synchronized amplitude and phase angle feature for fault diagnosis based on RRBF neural network. The fault diagnosis and location for the distribution branch is researched in the IEEE 13-bus active distribution network (ADN) system. The diagnosis accuracy and location precision is analyzed considering the effect of different input signals, fault position, and fault resistance. The simulation result demonstrates that the location method based on phase angle feature shows higher accuracy. The RRBF fault diagnosis and location method aims to solve fault in ADN and lays the foundation to maintain ADN system stability.
关键词Active distribution network (ADN) fault location analysis high resistance fault phase measurement unit (PMU)
资助者National Natural Science Foundation of China (NSFC) ; IAPI Fundamental Research Funds ; National Key RD Program ; Fundamental Research Funds for the Central Universities
DOI10.1080/15325008.2018.1460884
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China (NSFC)[61374137] ; National Natural Science Foundation of China (NSFC)[61773106] ; National Natural Science Foundation of China (NSFC)[61703086] ; IAPI Fundamental Research Funds[2013ZCX02-03] ; National Key RD Program[2017YFB0902900] ; Fundamental Research Funds for the Central Universities[N160403003]
WOS研究方向Engineering
WOS类目Engineering, Electrical & Electronic
WOS记录号WOS:000458114900001
出版者TAYLOR & FRANCIS INC
引用统计
被引频次:20[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/131699
专题中国科学院金属研究所
通讯作者Sun Lanxiang
作者单位1.Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Coll Informat Sci & Engn, Inst Automat, Shenyang, Liaoning, Peoples R China
2.Chinese Acad Sci, Shenyang Inst Automat, Shenyang, Liaoning, Peoples R China
3.Chinese Acad Sci, Key Lab Networked Control Syst, Shenyang, Liaoning, Peoples R China
4.Univ Chinese Acad Sci, Beijing, Peoples R China
5.Liaoning Elect Power Compony Ltd State Grid, Shenyang, Liaoning, Peoples R China
6.State Grid Liaoning Elect Power Supply Co Ltd, Yingkou Elect Power Supply Co, Shenyang, Liaoning, Peoples R China
推荐引用方式
GB/T 7714
Zhang Tong,Sun Lanxiang,Liu Jianchang,et al. Fault Diagnosis and Location Method for Active Distribution Network Based on Artificial Neural Network[J]. ELECTRIC POWER COMPONENTS AND SYSTEMS,2018,46(9):985-996.
APA Zhang Tong.,Sun Lanxiang.,Liu Jianchang.,Yu Haibin.,Zhou Xiaoming.,...&Zhang Yingwei.(2018).Fault Diagnosis and Location Method for Active Distribution Network Based on Artificial Neural Network.ELECTRIC POWER COMPONENTS AND SYSTEMS,46(9),985-996.
MLA Zhang Tong,et al."Fault Diagnosis and Location Method for Active Distribution Network Based on Artificial Neural Network".ELECTRIC POWER COMPONENTS AND SYSTEMS 46.9(2018):985-996.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang Tong]的文章
[Sun Lanxiang]的文章
[Liu Jianchang]的文章
百度学术
百度学术中相似的文章
[Zhang Tong]的文章
[Sun Lanxiang]的文章
[Liu Jianchang]的文章
必应学术
必应学术中相似的文章
[Zhang Tong]的文章
[Sun Lanxiang]的文章
[Liu Jianchang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。