Fault Diagnosis and Location Method for Active Distribution Network Based on Artificial Neural Network | |
Zhang Tong1; Sun Lanxiang2,3,4; Liu Jianchang1; Yu Haibin2,3,4; Zhou Xiaoming5; Gao Lin6; Zhang Yingwei1 | |
通讯作者 | Sun Lanxiang() |
2018 | |
发表期刊 | ELECTRIC POWER COMPONENTS AND SYSTEMS
![]() |
ISSN | 1532-5008 |
卷号 | 46期号:9页码:985-996 |
摘要 | A fault diagnosis and location method of artificial neural network (ANN) based on regularized radial basis function (RRBF) is proposed. The phase angle feature of fault voltage and current signal is analyzed. The proposed method adopts synchronized amplitude and phase angle feature for fault diagnosis based on RRBF neural network. The fault diagnosis and location for the distribution branch is researched in the IEEE 13-bus active distribution network (ADN) system. The diagnosis accuracy and location precision is analyzed considering the effect of different input signals, fault position, and fault resistance. The simulation result demonstrates that the location method based on phase angle feature shows higher accuracy. The RRBF fault diagnosis and location method aims to solve fault in ADN and lays the foundation to maintain ADN system stability. |
关键词 | Active distribution network (ADN) fault location analysis high resistance fault phase measurement unit (PMU) |
资助者 | National Natural Science Foundation of China (NSFC) ; IAPI Fundamental Research Funds ; National Key RD Program ; Fundamental Research Funds for the Central Universities |
DOI | 10.1080/15325008.2018.1460884 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China (NSFC)[61374137] ; National Natural Science Foundation of China (NSFC)[61773106] ; National Natural Science Foundation of China (NSFC)[61703086] ; IAPI Fundamental Research Funds[2013ZCX02-03] ; National Key RD Program[2017YFB0902900] ; Fundamental Research Funds for the Central Universities[N160403003] |
WOS研究方向 | Engineering |
WOS类目 | Engineering, Electrical & Electronic |
WOS记录号 | WOS:000458114900001 |
出版者 | TAYLOR & FRANCIS INC |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.imr.ac.cn/handle/321006/131699 |
专题 | 中国科学院金属研究所 |
通讯作者 | Sun Lanxiang |
作者单位 | 1.Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Coll Informat Sci & Engn, Inst Automat, Shenyang, Liaoning, Peoples R China 2.Chinese Acad Sci, Shenyang Inst Automat, Shenyang, Liaoning, Peoples R China 3.Chinese Acad Sci, Key Lab Networked Control Syst, Shenyang, Liaoning, Peoples R China 4.Univ Chinese Acad Sci, Beijing, Peoples R China 5.Liaoning Elect Power Compony Ltd State Grid, Shenyang, Liaoning, Peoples R China 6.State Grid Liaoning Elect Power Supply Co Ltd, Yingkou Elect Power Supply Co, Shenyang, Liaoning, Peoples R China |
推荐引用方式 GB/T 7714 | Zhang Tong,Sun Lanxiang,Liu Jianchang,et al. Fault Diagnosis and Location Method for Active Distribution Network Based on Artificial Neural Network[J]. ELECTRIC POWER COMPONENTS AND SYSTEMS,2018,46(9):985-996. |
APA | Zhang Tong.,Sun Lanxiang.,Liu Jianchang.,Yu Haibin.,Zhou Xiaoming.,...&Zhang Yingwei.(2018).Fault Diagnosis and Location Method for Active Distribution Network Based on Artificial Neural Network.ELECTRIC POWER COMPONENTS AND SYSTEMS,46(9),985-996. |
MLA | Zhang Tong,et al."Fault Diagnosis and Location Method for Active Distribution Network Based on Artificial Neural Network".ELECTRIC POWER COMPONENTS AND SYSTEMS 46.9(2018):985-996. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论