IMR OpenIR
Data-driven evaluation of fatigue performance of additive manufactured parts using miniature specimens
Wan, H. Y.1,2; Chen, G. F.3; Li, C. P.3; Qi, X. B.3,4; Zhang, G. P.1
通讯作者Zhang, G. P.(gpzhang@imr.ac.cn)
2019-06-01
发表期刊JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
ISSN1005-0302
卷号35期号:6页码:1137-1146
摘要This overview firstly introduces the state-of-the-art research progress in length scale-related fatigue performance of conventionally-fabricated metals evaluated by miniature specimens. Some key factors for size effects sensitive to microstructures including the specimen thickness, grain size and a ratio between them are highlighted to summarize some general rules for size effects. Then, ongoing research progress and new challenges in evaluating the fatigue performance of additive manufactured parts controlled by location-specific defects, microstructure heterogeneities as well as mechanical anisotropy using miniature specimen testing technique are discussed and addressed. Finally, a potential roadmap to establish a data-driven evaluation platform based on a large number of miniature specimen-based experiment data, theoretical computations and the 'big data' analysis with machine learning is proposed. It is expected that this overview would provide a novel strategy for the realistic evaluation and fast qualification of fatigue properties of additive manufactured parts we have been facing to. (C) 2019 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
关键词Additive manufacturing Miniature specimen Fatigue Size effect Location-specific Data analysis
资助者National Natural Science Foundation of China (NSFC)
DOI10.1016/j.jmst.2018.12.011
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China (NSFC)[51771207] ; National Natural Science Foundation of China (NSFC)[51571199]
WOS研究方向Materials Science ; Metallurgy & Metallurgical Engineering
WOS类目Materials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering
WOS记录号WOS:000464017000023
出版者JOURNAL MATER SCI TECHNOL
引用统计
被引频次:61[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/132831
专题中国科学院金属研究所
通讯作者Zhang, G. P.
作者单位1.Chinese Acad Sci, Shenyang Natl Lab Mat Sci, Inst Met Res, 72 Wenhua Rd, Shenyang 110016, Liaoning, Peoples R China
2.Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 110016, Liaoning, Peoples R China
3.Siemens Ltd, Mat & Mfg Qualificat Grp, Corp Technol, Beijing 100102, Peoples R China
4.Tsinghua Univ, State Key Lab Tribol, Beijing 100084, Peoples R China
推荐引用方式
GB/T 7714
Wan, H. Y.,Chen, G. F.,Li, C. P.,et al. Data-driven evaluation of fatigue performance of additive manufactured parts using miniature specimens[J]. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY,2019,35(6):1137-1146.
APA Wan, H. Y.,Chen, G. F.,Li, C. P.,Qi, X. B.,&Zhang, G. P..(2019).Data-driven evaluation of fatigue performance of additive manufactured parts using miniature specimens.JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY,35(6),1137-1146.
MLA Wan, H. Y.,et al."Data-driven evaluation of fatigue performance of additive manufactured parts using miniature specimens".JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 35.6(2019):1137-1146.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wan, H. Y.]的文章
[Chen, G. F.]的文章
[Li, C. P.]的文章
百度学术
百度学术中相似的文章
[Wan, H. Y.]的文章
[Chen, G. F.]的文章
[Li, C. P.]的文章
必应学术
必应学术中相似的文章
[Wan, H. Y.]的文章
[Chen, G. F.]的文章
[Li, C. P.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。