IMR OpenIR
Stress rupture properties and deformation mechanisms of K4750 alloy at the range of 650 degrees C to 800 degrees C
Ou, Meiqiong; Ma, Yingche; Xing, Weiwei; Hao, Xianchao; Chen, Bo; Ding, Leilei; Liu, Kui
通讯作者Ma, Yingche(ycma@imr.ac.cn) ; Liu, Kui(kliu@imr.ac.cn)
2019-07-01
发表期刊JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
ISSN1005-0302
卷号35期号:7页码:1270-1277
摘要The stress rupture properties and deformation mechanisms of K4750 alloy at 650 degrees C, 700 degrees C, 750 degrees C and 800 degrees C were investigated. As the decrease of temperature and stress, the stress rupture life gradually increased. A Larson-Miller Parameter (LMP) method was used for analyzing the stress rupture life under different conditions. The linear fitting formula between stress (sigma) and LMP was derived as sigma = 3166.455 - 119.969 x LMP and the fitting coefficient was 0.98. After testing, the dislocation configurations of all stress rupture samples were investigated by transmission electron microscopy (TEM). The temperature and stress had a significant impact on the deformation mechanism, thereby affected the stress rupture life of K4750 alloy. As the increasing stress at a given temperature, the deformation mechanism gradually transformed from Orowan looping to stacking fault shearing. Based on experimental results, the threshold stress at 650 degrees C, 700 degrees C, 750 degrees C and 800 degrees C for the transition of deformation mechanism was estimated to be about 650 MPa, 530 MPa, 430 MPa and 350 MPa, respectively. Below the threshold stress, gamma' phase effectively hindered dislocation motion by Orowan looping mechanism, K4750 alloy had a long stress rupture life. Slightly above the threshold stress, Orowan looping combining stacking fault shearing was the dominant mechanism, the stress rupture life decreased. As the further increase of stress, stacking fault shearing acted as the dominant deformation mechanism, the resistance to dislocation motion decreased rapidly, so the stress rupture life reduced significantly. (C) 2019 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
关键词Nickel based superalloy Stress rupture properties Dislocation Deformation mechanisms Transmission electron microscopy
DOI10.1016/j.jmst.2019.03.002
收录类别SCI
语种英语
WOS研究方向Materials Science ; Metallurgy & Metallurgical Engineering
WOS类目Materials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering
WOS记录号WOS:000466369600008
出版者JOURNAL MATER SCI TECHNOL
引用统计
被引频次:18[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/133590
专题中国科学院金属研究所
通讯作者Ma, Yingche; Liu, Kui
作者单位Chinese Acad Sci, Inst Met Res, Shenyang 110016, Liaoning, Peoples R China
推荐引用方式
GB/T 7714
Ou, Meiqiong,Ma, Yingche,Xing, Weiwei,et al. Stress rupture properties and deformation mechanisms of K4750 alloy at the range of 650 degrees C to 800 degrees C[J]. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY,2019,35(7):1270-1277.
APA Ou, Meiqiong.,Ma, Yingche.,Xing, Weiwei.,Hao, Xianchao.,Chen, Bo.,...&Liu, Kui.(2019).Stress rupture properties and deformation mechanisms of K4750 alloy at the range of 650 degrees C to 800 degrees C.JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY,35(7),1270-1277.
MLA Ou, Meiqiong,et al."Stress rupture properties and deformation mechanisms of K4750 alloy at the range of 650 degrees C to 800 degrees C".JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 35.7(2019):1270-1277.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ou, Meiqiong]的文章
[Ma, Yingche]的文章
[Xing, Weiwei]的文章
百度学术
百度学术中相似的文章
[Ou, Meiqiong]的文章
[Ma, Yingche]的文章
[Xing, Weiwei]的文章
必应学术
必应学术中相似的文章
[Ou, Meiqiong]的文章
[Ma, Yingche]的文章
[Xing, Weiwei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。