Evolution of flux-closure domain arrays in oxide multilayers with misfit strain | |
Li, S.1,2; Wang, Y. J.1; Zhu, Y. L.1; Tang, Y. L.1; Liu, Y.1; Ma, J. Y.1,2,3; Han, M. J.1,2; Wu, Bo1,4; Ma, X. L.1,3 | |
通讯作者 | Zhu, Y. L.(ylzhu@imr.ac.cn) |
2019-06-01 | |
发表期刊 | ACTA MATERIALIA
![]() |
ISSN | 1359-6454 |
卷号 | 171页码:176-183 |
摘要 | Ferroelectric flux-closure domains have attracted great attention due to their potentials in high density data storage. For their future applications, it is important to understand their evolution with different factors, such as misfit strain. In this work, a flux-closure domain consisting of a vertical 180 domain wall with two symmetric a domains in both ends ("I" type closure) was observed in nearly unstrained SrTiO3/PbTiO3 multilayers by aberration corrected Transmission Electron Microscopy, which was speculated to be mainly induced by the strong depolarization field near the interface. With the tensile strain increasing, the small a domains in "I" type flux-closures grow gradually and eventually change to the well-known "V" type flux-closures. On the basis of a combination of experimental results and phase field simulations, the phase diagram of the stabilized domain arrays versus the strains in PbTiO3 films are established. These results provide significant information on understanding the formation mechanism of flux-closure domains and shed light on their controlled growth. In addition, it paves a way to reduce the economic cost in their commercial applications because the SrTiO3 substrate is easy to synthesize and much cheaper than scandate substrates. (C) 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. |
关键词 | Ferroelectric film Flux-closure domain Misfit strain Aberration corrected transmission electron microscope Phase field modeling |
资助者 | National Natural Science Foundation of China ; National Basic Research Program of China ; Key Research Program of Frontier Sciences CAS ; IMR SYNL-T.S. Ke Research Fellowship ; Youth Innovation Promotion Association CAS |
DOI | 10.1016/j.actamat.2019.04.020 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[51571197] ; National Natural Science Foundation of China[51501194] ; National Natural Science Foundation of China[51671194] ; National Basic Research Program of China[2014CB921002] ; Key Research Program of Frontier Sciences CAS[QYZDJ-SSW-JSC010] ; IMR SYNL-T.S. Ke Research Fellowship ; Youth Innovation Promotion Association CAS[2016177] |
WOS研究方向 | Materials Science ; Metallurgy & Metallurgical Engineering |
WOS类目 | Materials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering |
WOS记录号 | WOS:000470046400017 |
出版者 | PERGAMON-ELSEVIER SCIENCE LTD |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.imr.ac.cn/handle/321006/133699 |
专题 | 中国科学院金属研究所 |
通讯作者 | Zhu, Y. L. |
作者单位 | 1.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, 72 Wenhua Rd, Shenyang 110016, Peoples R China 2.Univ Chinese Acad Sci, 19 Yuquan Rd, Beijing 100049, Peoples R China 3.Lanzhou Univ Technol, State Key Lab Adv Proc & Recycling Nonferrous Met, Lanzhou 730050, Gansu, Peoples R China 4.Univ Sci & Technol China, Sch Mat Sci & Engn, Hefei 230026, Peoples R China |
推荐引用方式 GB/T 7714 | Li, S.,Wang, Y. J.,Zhu, Y. L.,et al. Evolution of flux-closure domain arrays in oxide multilayers with misfit strain[J]. ACTA MATERIALIA,2019,171:176-183. |
APA | Li, S..,Wang, Y. J..,Zhu, Y. L..,Tang, Y. L..,Liu, Y..,...&Ma, X. L..(2019).Evolution of flux-closure domain arrays in oxide multilayers with misfit strain.ACTA MATERIALIA,171,176-183. |
MLA | Li, S.,et al."Evolution of flux-closure domain arrays in oxide multilayers with misfit strain".ACTA MATERIALIA 171(2019):176-183. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论