Artificial electrode interfaces enable stable operation of freestanding anodes for high-performance flexible lithium ion batteries | |
Liu, Lixiang1,2; Zhu, Minshen1; Huang, Shaozhuan1; Lu, Xueyi1; Zhang, Long3; Li, Yang1,2; Wang, Sitao1; Liu, Lifeng4; Weng, Qunhong1,3,5; Schmidt, Oliver G.1,6 | |
Corresponding Author | Zhu, Minshen(m.zhu@ifw-dresden.de) ; Weng, Qunhong(wengqh@hnu.edu.cn) |
2019-06-21 | |
Source Publication | JOURNAL OF MATERIALS CHEMISTRY A
![]() |
ISSN | 2050-7488 |
Volume | 7Issue:23Pages:14097-14107 |
Abstract | High-performance flexible lithium-ion batteries are leading candidates for power sources of wearable and foldable electronics. As a result, it is vital to design freestanding electrodes with high capacity and stability. Herein, we develop a novel strategy to significantly improve the performance of freestanding anodes by artificially introducing an ultrathin but robust interface based on polyacrylamide/gelatin gel with excellent mechanical durability and ionic conductivity. The artificial interface suppresses the formation of a thick solid electrolyte interface, facilitates charge transfer processes and strengthens the integrity of the electrode. Benefitting from these merits, our freestanding anode made of the nano/microstructured NiFe2O4-CNTs composite achieves a high capacity of 612 mA h g(-1) based on the total mass of the electrode. The high-performance freestanding anode further enables a stable output capacity of 140 mA h g(-1) over 1000 charge/discharge cycles for a full battery using commercial LiMn2O4 as the cathode material. Meanwhile, the excellent rate performance of the freestanding anode guarantees high energy output up to 255 W h kg(-1) at a high power density of 12 000 W kg(-1) for the full battery. Moreover, the intrinsic flexibility of the freestanding electrodes enables the fabrication of a flexible lithium-ion battery, which is highly stable even under harsh mechanical deformation. This work provides a new perspective to fabricate next-generation flexible batteries with high energy density and excellent stability, further advancing the development of foldable and wearable electronics toward practical applications. |
Funding Organization | China Scholarship Council (CSC) ; Alexander von Humboldt Foundation |
DOI | 10.1039/c9ta03302e |
Indexed By | SCI |
Language | 英语 |
Funding Project | China Scholarship Council (CSC) ; Alexander von Humboldt Foundation |
WOS Research Area | Chemistry ; Energy & Fuels ; Materials Science |
WOS Subject | Chemistry, Physical ; Energy & Fuels ; Materials Science, Multidisciplinary |
WOS ID | WOS:000472566400024 |
Publisher | ROYAL SOC CHEMISTRY |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://ir.imr.ac.cn/handle/321006/134012 |
Collection | 中国科学院金属研究所 |
Corresponding Author | Zhu, Minshen; Weng, Qunhong |
Affiliation | 1.Leibniz IFW Dresden, Inst Integrat Nanosci, D-01069 Dresden, Germany 2.Tech Univ Chemnitz, Mat Syst Nanoelect, D-09107 Chemnitz, Germany 3.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Liaoning, Peoples R China 4.Int Iberian Nanotechnol Lab, P-4715330 Braga, Portugal 5.Hunan Univ, Sch Mat Sci & Engn, Changsha 110016, Hunan, Peoples R China 6.Tech Univ Chemnitz, Mat Architectures & Integrat Nanomembranes, D-09107 Chemnitz, Germany |
Recommended Citation GB/T 7714 | Liu, Lixiang,Zhu, Minshen,Huang, Shaozhuan,et al. Artificial electrode interfaces enable stable operation of freestanding anodes for high-performance flexible lithium ion batteries[J]. JOURNAL OF MATERIALS CHEMISTRY A,2019,7(23):14097-14107. |
APA | Liu, Lixiang.,Zhu, Minshen.,Huang, Shaozhuan.,Lu, Xueyi.,Zhang, Long.,...&Schmidt, Oliver G..(2019).Artificial electrode interfaces enable stable operation of freestanding anodes for high-performance flexible lithium ion batteries.JOURNAL OF MATERIALS CHEMISTRY A,7(23),14097-14107. |
MLA | Liu, Lixiang,et al."Artificial electrode interfaces enable stable operation of freestanding anodes for high-performance flexible lithium ion batteries".JOURNAL OF MATERIALS CHEMISTRY A 7.23(2019):14097-14107. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment