Architecture of high-strength aluminum-matrix composites processed by a novel microcasting technique | |
Shao, Chenwei1; Zhao, Shuo2; Wang, Xuegang1; Zhu, Yankun1; Zhang, Zhefeng1; Ritchie, Robert O.3 | |
Corresponding Author | Zhao, Shuo(szhao14b@alum.imr.ac.cn) ; Zhang, Zhefeng(zhfzhang@imr.ac.cn) |
2019-11-29 | |
Source Publication | NPG ASIA MATERIALS
![]() |
ISSN | 1884-4049 |
Volume | 11Pages:12 |
Abstract | As important lightweight structural materials, cast aluminum alloys have been largely used in the transportation and aerospace industries. In general, Al-Si-based alloys comprise more than 90% of all castings due to their excellent castability and corrosion resistance. However, even though various reinforcements have been introduced, the strength of these alloys is not that high, which severely limits their use for certain high-performance applications. Here, we report on a new strategy and technology to reinforce Al-Si alloys to increase their yield strength into the similar to 400-660 MPa range, a level that is 29-1 13% higher than that of all current cast Al-Si alloys, laboratory or commercial, and comparable to that of many high-strength steels but with -40% lower density. By introducing continuous Ti-6Al-4V reinforcements into the Al-Si matrix through a novel microcasting process, the yield strength of the resulting alloy can be enhanced to between 4 and 6 times higher than that of the pure Al-Si alloy. The extraordinary reinforcing effect originates from the occurrence of multiscale strengthening mechanisms, including macroscale compound strengthening (the rule of mixtures amended by crack arrest mechanism), mesoscale strain-gradient strengthening, and microscale interface-affected-zone and nanoparticle strengthening. The core principle of our material design is to make all components of the composite fully participate in plastic (compatible) deformation, and thus, continuous reinforcements, instead of discrete reinforced structures (e.g., particles, whiskers, and short fibers), were introduced into the Al-Si alloy. Combined with 3-D printing technology, the present microcasting process can realize strengthening at the designed position by architecting specific reinforcements in the matrix. |
Funding Organization | National Natural Science Foundation of China (NSFC) ; Open Foundation of Key Laboratory of Fundamental Science for National Defence of Aeronautical Digital Manufacturing Process ; Natural Science Foundation of Liaoning Province ; IMR SYNL-T.S. Ke Research Fellowship |
DOI | 10.1038/s41427-019-0174-2 |
Indexed By | SCI |
Language | 英语 |
Funding Project | National Natural Science Foundation of China (NSFC)[51501198] ; National Natural Science Foundation of China (NSFC)[51771208] ; National Natural Science Foundation of China (NSFC)[51801216] ; Open Foundation of Key Laboratory of Fundamental Science for National Defence of Aeronautical Digital Manufacturing Process[SHSYS201803] ; Natural Science Foundation of Liaoning Province[20180540142] ; IMR SYNL-T.S. Ke Research Fellowship |
WOS Research Area | Materials Science |
WOS Subject | Materials Science, Multidisciplinary |
WOS ID | WOS:000502983500002 |
Publisher | NATURE PUBLISHING GROUP |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://ir.imr.ac.cn/handle/321006/136300 |
Collection | 中国科学院金属研究所 |
Corresponding Author | Zhao, Shuo; Zhang, Zhefeng |
Affiliation | 1.Chinese Acad Sci, Inst Met Res, Lab Fatigue & Fracture Mat, Shenyang 110016, Liaoning, Peoples R China 2.Shenyang Aerosp Univ, Key Lab Fundamental Sci Natl Def Aeronaut Digital, Shenyang 110136, Liaoning, Peoples R China 3.Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA |
Recommended Citation GB/T 7714 | Shao, Chenwei,Zhao, Shuo,Wang, Xuegang,et al. Architecture of high-strength aluminum-matrix composites processed by a novel microcasting technique[J]. NPG ASIA MATERIALS,2019,11:12. |
APA | Shao, Chenwei,Zhao, Shuo,Wang, Xuegang,Zhu, Yankun,Zhang, Zhefeng,&Ritchie, Robert O..(2019).Architecture of high-strength aluminum-matrix composites processed by a novel microcasting technique.NPG ASIA MATERIALS,11,12. |
MLA | Shao, Chenwei,et al."Architecture of high-strength aluminum-matrix composites processed by a novel microcasting technique".NPG ASIA MATERIALS 11(2019):12. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment