Multiscale Toughening Mechanisms in Biological Materials and Bioinspired Designs | |
Huang, Wei1; Restrepo, David2,3; Jung, Jae-Young4; Su, Frances Y.4; Liu, Zengqian5,6; Ritchie, Robert O.5; McKittrick, Joanna4,7; Zavattieri, Pablo2; Kisailus, David1,8 | |
通讯作者 | Kisailus, David(david@engr.ucr.edu) |
2019-10-01 | |
发表期刊 | ADVANCED MATERIALS
![]() |
ISSN | 0935-9648 |
卷号 | 31期号:43页码:37 |
摘要 | Biological materials found in Nature such as nacre and bone are well recognized as light-weight, strong, and tough structural materials. The remarkable toughness and damage tolerance of such biological materials are conferred through hierarchical assembly of their multiscale (i.e., atomic- to macroscale) architectures and components. Herein, the toughening mechanisms of different organisms at multilength scales are identified and summarized: macromolecular deformation, chemical bond breakage, and biomineral crystal imperfections at the atomic scale; biopolymer fibril reconfiguration/deformation and biomineral nanoparticle/nanoplatelet/nanorod translation, and crack reorientation at the nanoscale; crack deflection and twisting by characteristic features such as tubules and lamellae at the microscale; and structure and morphology optimization at the macroscale. In addition, the actual loading conditions of the natural organisms are different, leading to energy dissipation occurring at different time scales. These toughening mechanisms are further illustrated by comparing the experimental results with computational modeling. Modeling methods at different length and time scales are reviewed. Examples of biomimetic designs that realize the multiscale toughening mechanisms in engineering materials are introduced. Indeed, there is still plenty of room mimicking the strong and tough biological designs at the multilength and time scale in Nature. |
关键词 | bioinspired designs biological materials computational modeling multiscale materials toughening mechanisms |
资助者 | Air Force Office of Scientific Research, Multi-University Research Initiative ; Air Force Office of Scientific Research ; Army Research Office |
DOI | 10.1002/adma.201901561 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | Air Force Office of Scientific Research, Multi-University Research Initiative[AFOSR-FA9550-15-1-0009] ; Air Force Office of Scientific Research[AFOSR-FA9550-12-1-0245] ; Air Force Office of Scientific Research[AFOSR-FA9550-12-1-0249] ; Army Research Office[ARO-W911NF-15-1-0306] |
WOS研究方向 | Chemistry ; Science & Technology - Other Topics ; Materials Science ; Physics |
WOS类目 | Chemistry, Multidisciplinary ; Chemistry, Physical ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary ; Physics, Applied ; Physics, Condensed Matter |
WOS记录号 | WOS:000503040600002 |
出版者 | WILEY-V C H VERLAG GMBH |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.imr.ac.cn/handle/321006/136425 |
专题 | 中国科学院金属研究所 |
通讯作者 | Kisailus, David |
作者单位 | 1.Univ Calif Riverside, Dept Chem & Environm Engn, Riverside, CA 92521 USA 2.Purdue Univ, Lyles Sch Civil Engn, W Lafayette, IN 47907 USA 3.Univ Texas San Antonio, Dept Mech Engn, San Antonio, TX 78249 USA 4.Univ Calif San Diego, Mat Sci & Engn Program, La Jolla, CA 92093 USA 5.Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA 6.Chinese Acad Sci, Inst Met Res, Mat Fatigue & Fracture Div, Shenyang 110016, Liaoning, Peoples R China 7.Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA 8.Univ Calif Riverside, Mat Sci & Engn Program, Riverside, CA 92521 USA |
推荐引用方式 GB/T 7714 | Huang, Wei,Restrepo, David,Jung, Jae-Young,et al. Multiscale Toughening Mechanisms in Biological Materials and Bioinspired Designs[J]. ADVANCED MATERIALS,2019,31(43):37. |
APA | Huang, Wei.,Restrepo, David.,Jung, Jae-Young.,Su, Frances Y..,Liu, Zengqian.,...&Kisailus, David.(2019).Multiscale Toughening Mechanisms in Biological Materials and Bioinspired Designs.ADVANCED MATERIALS,31(43),37. |
MLA | Huang, Wei,et al."Multiscale Toughening Mechanisms in Biological Materials and Bioinspired Designs".ADVANCED MATERIALS 31.43(2019):37. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论