Strain-induced exchange bias transition at La0.7Sr0.3MnO3/NiO interface | |
Wu, Yingjie1; Wang, Zhanjie1,2; Liang, Yongmei1; Zhang, Zhidong1 | |
通讯作者 | Wang, Zhanjie(wangzj@imr.ac.cn) |
2020-04-05 | |
发表期刊 | JOURNAL OF ALLOYS AND COMPOUNDS
![]() |
ISSN | 0925-8388 |
卷号 | 819页码:7 |
摘要 | The exchange bias effect with anisotropy perpendicular to the device plane is promising for exploring the next generation of spintronics devices. However, the effective modulating of exchange bias remains challenging because the understanding of the mechanism on tuning the exchange bias anisotropy is lacking and worth investigation. In this study, epitaxial La0.7Sr0.3MnO3/NiO (LSMO/NiO) bilayers were deposited on the (001)-orientated SrTiO3 and MgO substrates by pulse laser deposition to further explore the mechanism behind the anisotropy of EB effect at the LSMO/NiO interface. The results demonstrate the exchange bias transition from in-plane to out-of-plane by changing the substrate from SrTiO3 to MgO. According to the strain analyses, the substrate strain-induced spin reorientation transition of NiO plays an important role on the exchange coupling at the LSMO/NiO interface, leading to the EB effect transition. The significance of the interaction between strain and spin at the heterointerface is revealed, which provides a possible way for the regulation of interfacial magnetism. (C) 2019 Elsevier B.V. All rights reserved. |
关键词 | Exchange bias LSMO/NiO bilayer Lattice strain Spin reorientation transition |
资助者 | basic research and common key technology innovation projects of Shenyang National Laboratory for Materials Science ; basic scientific research projects of colleges and universities of Liaoning Province of China ; key research and development plan of Liaoning Province ; major project of Industrial Technology Research Institute of Liaoning Colleges and Universities ; National Basic Research Program of China |
DOI | 10.1016/j.jallcom.2019.153022 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | basic research and common key technology innovation projects of Shenyang National Laboratory for Materials Science[2017RP15] ; basic scientific research projects of colleges and universities of Liaoning Province of China[LZGD2017005] ; key research and development plan of Liaoning Province[2017104002] ; major project of Industrial Technology Research Institute of Liaoning Colleges and Universities[201824010] ; National Basic Research Program of China[2017YFA0206302] |
WOS研究方向 | Chemistry ; Materials Science ; Metallurgy & Metallurgical Engineering |
WOS类目 | Chemistry, Physical ; Materials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering |
WOS记录号 | WOS:000507378300135 |
出版者 | ELSEVIER SCIENCE SA |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.imr.ac.cn/handle/321006/136601 |
专题 | 中国科学院金属研究所 |
通讯作者 | Wang, Zhanjie |
作者单位 | 1.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China 2.Shenyang Univ Technol, Sch Mat Sci & Engn, Shenyang 110870, Peoples R China |
推荐引用方式 GB/T 7714 | Wu, Yingjie,Wang, Zhanjie,Liang, Yongmei,et al. Strain-induced exchange bias transition at La0.7Sr0.3MnO3/NiO interface[J]. JOURNAL OF ALLOYS AND COMPOUNDS,2020,819:7. |
APA | Wu, Yingjie,Wang, Zhanjie,Liang, Yongmei,&Zhang, Zhidong.(2020).Strain-induced exchange bias transition at La0.7Sr0.3MnO3/NiO interface.JOURNAL OF ALLOYS AND COMPOUNDS,819,7. |
MLA | Wu, Yingjie,et al."Strain-induced exchange bias transition at La0.7Sr0.3MnO3/NiO interface".JOURNAL OF ALLOYS AND COMPOUNDS 819(2020):7. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论