IMR OpenIR
Microstructure formation and electrical resistivity behavior of rapidly solidified Cu-Fe-Zr immiscible alloys
Sun, Xiaojun1,2; He, Jie1,2; Chen, Bin1,2; Zhang, Lili1; Jiang, Hongxiang1; Zhao, Jiuzhou1,2; Hao, Hongri1
通讯作者He, Jie(jiehe@imr.ac.cn)
2020-05-01
发表期刊JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
ISSN1005-0302
卷号44页码:201-208
摘要The immiscible Cu-Fe alloy was characterized by a metastable miscibility gap. With the addition element Zr, the miscibility gap can be extended into the Cu-Fe-Zr ternary system. The effect of the atomic ratio of Cu to Fe and Zr content on the behavior of liquid-liquid phase separation was studied. The results show that liquid-liquid phase separation into Cu-rich and Fe-rich liquids took place in the as-quenched Cu-Fe-Zr alloy. A glassy structure with nanoscale phase separation was obtained in the as-quenched (Cu0.5Fe0.5)(40)Zr-60 alloy sample, exhibiting a homogeneous distribution of glassy Cu-rich nanoparticles in glassy Fe-rich matrix. The microstructural evolution and the competitive mechanism of phase formation in the rapidly solidified Cu-Fe-Zr system were discussed in detail. Moreover, the electrical property of the as-quenched Cu-Fe-Zr alloy samples was examined. It displays an abnormal change of electrical resistivity upon temperature in the nanoscale-phase-separation metallic glass. The crystallization behavior of such metallic glass has been discussed. (C) 2020 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
关键词Immiscible alloys Liquid-liquid phase separation Rapid solidification Microstructure Electrical resistivity behavior
资助者National Natural Science Foundation of China ; Natural Science Foundation of Liaoning Province of China
DOI10.1016/j.jmst.2019.10.038
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[51774264] ; National Natural Science Foundation of China[51574216] ; National Natural Science Foundation of China[51974288] ; National Natural Science Foundation of China[51374194] ; Natural Science Foundation of Liaoning Province of China[2019-MS-332]
WOS研究方向Materials Science ; Metallurgy & Metallurgical Engineering
WOS类目Materials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering
WOS记录号WOS:000522863000021
出版者JOURNAL MATER SCI TECHNOL
引用统计
被引频次:26[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/137844
专题中国科学院金属研究所
通讯作者He, Jie
作者单位1.Chinese Acad Sci, Inst Met Res, Shenyang 110016, Peoples R China
2.Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 110016, Peoples R China
推荐引用方式
GB/T 7714
Sun, Xiaojun,He, Jie,Chen, Bin,et al. Microstructure formation and electrical resistivity behavior of rapidly solidified Cu-Fe-Zr immiscible alloys[J]. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY,2020,44:201-208.
APA Sun, Xiaojun.,He, Jie.,Chen, Bin.,Zhang, Lili.,Jiang, Hongxiang.,...&Hao, Hongri.(2020).Microstructure formation and electrical resistivity behavior of rapidly solidified Cu-Fe-Zr immiscible alloys.JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY,44,201-208.
MLA Sun, Xiaojun,et al."Microstructure formation and electrical resistivity behavior of rapidly solidified Cu-Fe-Zr immiscible alloys".JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 44(2020):201-208.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Sun, Xiaojun]的文章
[He, Jie]的文章
[Chen, Bin]的文章
百度学术
百度学术中相似的文章
[Sun, Xiaojun]的文章
[He, Jie]的文章
[Chen, Bin]的文章
必应学术
必应学术中相似的文章
[Sun, Xiaojun]的文章
[He, Jie]的文章
[Chen, Bin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。