IMR OpenIR
Fundamental band gap and alignment of two-dimensional semiconductors explored by machine learning*
Zhu, Zhen1; Dong, Baojuan2,4,5; Guo, Huaihong3; Yang, Teng2; Zhang, Zhidong2
通讯作者Zhu, Zhen(zhuzhen@engineering.ucsb.edu) ; Yang, Teng(yangteng@imr.ac.cn)
2020-03-01
发表期刊CHINESE PHYSICS B
ISSN1674-1056
卷号29期号:4页码:9
摘要Two-dimensional (2D) semiconductors isoelectronic to phosphorene have been drawing much attention recently due to their promising applications for next-generation (opt)electronics. This family of 2D materials contains more than 400 members, including (a) elemental group-V materials, (b) binary III-VII and IV-VI compounds, (c) ternary III-VI-VII and IV-V-VII compounds, making materials design with targeted functionality unprecedentedly rich and extremely challenging. To shed light on rational functionality design with this family of materials, we systemically explore their fundamental band gaps and alignments using hybrid density functional theory (DFT) in combination with machine learning. First, calculations are performed using both the Perdew-Burke-Ernzerhof exchange-correlation functional within the general-gradient-density approximation (GGA-PBE) and Heyd-Scuseria-Ernzerhof hybrid functional (HSE) as a reference. We find this family of materials share similar crystalline structures, but possess largely distributed band-gap values ranging approximately from 0 eV to 8 eV. Then, we apply machine learning methods, including linear regression (LR), random forest regression (RFR), and support vector machine regression (SVR), to build models for the prediction of electronic properties. Among these models, SVR is found to have the best performance, yielding the root mean square error (RMSE) less than 0.15 eV for the predicted band gaps, valence-band maximums (VBMs), and conduction-band minimums (CBMs) when both PBE results and elemental information are used as features. Thus, we demonstrate that the machine learning models are universally suitable for screening 2D isoelectronic systems with targeted functionality, and especially valuable for the design of alloys and heterogeneous systems.
关键词two-dimensional semiconductors machine learning
资助者National Key R&D Program of China
DOI10.1088/1674-1056/ab75d5
收录类别SCI
语种英语
资助项目National Key R&D Program of China[2017YFA0206301]
WOS研究方向Physics
WOS类目Physics, Multidisciplinary
WOS记录号WOS:000523403600001
出版者IOP PUBLISHING LTD
引用统计
被引频次:24[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/137966
专题中国科学院金属研究所
通讯作者Zhu, Zhen; Yang, Teng
作者单位1.Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA
2.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
3.Liaoning Shihua Univ, Coll Sci, Fushun 113001, Peoples R China
4.Shanxi Univ, Inst Optoelect, State Key Lab Quantum Opt & Quantum Opt Devices, Taiyuan 030006, Peoples R China
5.Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Peoples R China
推荐引用方式
GB/T 7714
Zhu, Zhen,Dong, Baojuan,Guo, Huaihong,et al. Fundamental band gap and alignment of two-dimensional semiconductors explored by machine learning*[J]. CHINESE PHYSICS B,2020,29(4):9.
APA Zhu, Zhen,Dong, Baojuan,Guo, Huaihong,Yang, Teng,&Zhang, Zhidong.(2020).Fundamental band gap and alignment of two-dimensional semiconductors explored by machine learning*.CHINESE PHYSICS B,29(4),9.
MLA Zhu, Zhen,et al."Fundamental band gap and alignment of two-dimensional semiconductors explored by machine learning*".CHINESE PHYSICS B 29.4(2020):9.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhu, Zhen]的文章
[Dong, Baojuan]的文章
[Guo, Huaihong]的文章
百度学术
百度学术中相似的文章
[Zhu, Zhen]的文章
[Dong, Baojuan]的文章
[Guo, Huaihong]的文章
必应学术
必应学术中相似的文章
[Zhu, Zhen]的文章
[Dong, Baojuan]的文章
[Guo, Huaihong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。