Strong Electronic Coupling between Ultrafine Iridium-Ruthenium Nanoclusters and Conductive, Acid-Stable Tellurium Nanoparticle Support for Efficient and Durable Oxygen Evolution in Acidic and Neutral Media | |
Xu, Junyuan1; Lian, Zan2; Wei, Bin1; Li, Yue1,3; Bondarchuk, Oleksandr1; Zhang, Nan1; Yu, Zhipeng1,4; Araujo, Ana1; Amorim, Isilda1,3; Wang, Zhongchang1; Li, Bo2; Liu, Lifeng1 | |
通讯作者 | Wang, Zhongchang(zhongchang.wang@inl.int) ; Li, Bo(boli@imr.ac.cn) ; Liu, Lifeng(lifeng.liu@inl.int) |
2020-03-20 | |
发表期刊 | ACS CATALYSIS
![]() |
ISSN | 2155-5435 |
卷号 | 10期号:6页码:3571-3579 |
摘要 | Proton exchange membrane water electrolysis (PEM-WE) has emerged as a promising technology for hydrogen production and shows substantial advantages over conventional alkaline water electrolysis. To enable efficient PEM-WE in acidic media, iridium (Ir)- or ruthenium (Ru)-based catalysts are indispensable to drive the thermodynamically and kinetically demanding oxygen evolution reaction (OER). However, developing Ir/Ru catalysts with high efficiency and long-term durability still remains a formidable challenge. Herein, we report one-pot hydrothermal synthesis of ultrafine IrRu intermetallic nanoclusters loaded on conductive, acid-stable, amorphous tellurium nanoparticle support (IrRu@Te). Benefiting from the large exposed electrocatalytically active surface of ultrafine IrRu clusters and the strong electronic coupling between IrRu and Te support, the as-obtained IrRu@Te catalysts show good catalytic performance for the OER in strong acidic electrolyte (i.e., 0.5 M H2SO4), requiring overpotentials of only 220 and 303 mV to deliver 10 and 100 mA cm(-2) and able to sustain continuous OER electrolysis up to 20 h at 10 mA cm(-2) with minimal degradation. Moreover, IrRu@Te exhibits high specific activity, illustrating intrinsically better performance compared with that of unsupported IrRu and other commercial Ir- and Ru-based catalysts. It also demonstrates unprecedentedly high mass activity of 590 A g(IrRu)(-1) at an overpotential of 270 mV, outperforming most Ir- and Ru-based OER catalysts reported in the literature. Furthermore, IrRu@Te catalysts reveal good OER performance in neutral electrolyte as well, holding great potential to be used for PEM-WE in environmentally friendly conditions. Density functional theory (DFT) calculations based on oxidized IrRu confirm that the catalyst/support coupling results in a lower energy barrier for the oxygen-oxygen bonding formation, offering a rational explanation to the experimentally observed OER performance. |
关键词 | electrocatalysis oxygen evolution reaction IrRu nanocluster tellurium support electronic coupling |
资助者 | Portuguese Foundation of Science and Technology (FCT) ; Natural Science Foundation of China ; European Regional Development Fund (ERDF) through COMPETE2020 programme ; FCT |
DOI | 10.1021/acscatal.9b05611 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | Portuguese Foundation of Science and Technology (FCT)[IF/2014/01595] ; Natural Science Foundation of China[21573255] ; European Regional Development Fund (ERDF) through COMPETE2020 programme ; FCT[POCI-01-0145-FEDER-030674] |
WOS研究方向 | Chemistry |
WOS类目 | Chemistry, Physical |
WOS记录号 | WOS:000526394500008 |
出版者 | AMER CHEMICAL SOC |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.imr.ac.cn/handle/321006/138220 |
专题 | 中国科学院金属研究所 |
通讯作者 | Wang, Zhongchang; Li, Bo; Liu, Lifeng |
作者单位 | 1.Int Iberian Nanotechnol Lab INL, P-4715330 Braga, Portugal 2.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China 3.Univ Minho, Ctr Chem, Chem Dept, P-4710057 Braga, Portugal 4.Univ Porto, Fac Engn, LCM, LSRE, P-4200465 Porto, Portugal |
推荐引用方式 GB/T 7714 | Xu, Junyuan,Lian, Zan,Wei, Bin,et al. Strong Electronic Coupling between Ultrafine Iridium-Ruthenium Nanoclusters and Conductive, Acid-Stable Tellurium Nanoparticle Support for Efficient and Durable Oxygen Evolution in Acidic and Neutral Media[J]. ACS CATALYSIS,2020,10(6):3571-3579. |
APA | Xu, Junyuan.,Lian, Zan.,Wei, Bin.,Li, Yue.,Bondarchuk, Oleksandr.,...&Liu, Lifeng.(2020).Strong Electronic Coupling between Ultrafine Iridium-Ruthenium Nanoclusters and Conductive, Acid-Stable Tellurium Nanoparticle Support for Efficient and Durable Oxygen Evolution in Acidic and Neutral Media.ACS CATALYSIS,10(6),3571-3579. |
MLA | Xu, Junyuan,et al."Strong Electronic Coupling between Ultrafine Iridium-Ruthenium Nanoclusters and Conductive, Acid-Stable Tellurium Nanoparticle Support for Efficient and Durable Oxygen Evolution in Acidic and Neutral Media".ACS CATALYSIS 10.6(2020):3571-3579. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论