Two-Dimensional Titanium Carbide (Ti3C2Tx) MXenes of Different Flake Sizes Studied by Scanning Electrochemical Microscopy in Different Electrolytes | |
Gupta, Sanju1,2; Ringo, Wyatt3; Hu, Minmin4; Wang, Xiaohui4 | |
通讯作者 | Gupta, Sanju(sgup77@gmail.com) |
2020-04-09 | |
发表期刊 | JOURNAL OF ELECTRONIC MATERIALS
![]() |
ISSN | 0361-5235 |
卷号 | 49期号:6页码:17 |
摘要 | Two-dimensional (2D) layered materials are studied in efforts to discover new compounds and for their fascinating properties engendered by their sheet-like structure and tunable surfaces. MXenes are an emergent class of layered, synthesized transition metal carbides and carbonitrides that are useful in addressing the formidable challenges of sensing at the energy-water nexus. This work reports systematic structural and electrochemical properties of titanium carbide (Ti3C2Tx) MXenes revealed by varying interlayer spacing, flake thickness and lateral size under different electrolytes. In addition to traditional electrode kinetics, we utilized surface sensitive scanning electrochemical microscopy (SECM) to gain a more complete understanding of rich MXene surface chemistry and corresponding knowledge about the physicochemical processes, including inherent electrochemistry and heterogeneous charge transfer characteristics, at electrode/electrolyte (solid/liquid) interfaces. We employed electron microscopy, ultraviolet-visible (UV-Vis) absorption spectroscopy, x-ray diffraction, and Raman spectroscopy to determine surface morphology, microscopic and electronic structure and lattice vibrational properties. It is shown that Ti3C2Tx or, specifically, transition metal Ti, undergoes irreversible oxidation and lithiation in a positive potential window, which strongly depends on the flake thickness and type (aqueous versus organic) of the electrolyte. Multi-layered and smaller Ti3C2Tx flakes exhibit faster electron transfer kinetics (k(ET) = 1.2 cm s(-1)) with a potassium ferrocyanide [Fe(CN)(6)](4-/3-) redox probe, compared to few-layered Ti3C2Tx (k(ET) = 0.3 cm s(-1)) in aqueous and organic electrolyte (k(ET) = 4.9 cm s(-1)) with a [Fe(CN)(6)](4-/3-) redox probe, and compared to a few-layered Ti3C2Tx (k(ET) = 0.9 cm s(-1)). In addition, the few-layered free standing Ti3C2Tx film electrode remains intact following irreversible oxidation. These properties help to establish structure-property-electroactivity relationships among different types of Ti3C2Tx MXenes. |
关键词 | Two-dimensional material MXenes flake (particle) size surface redox chemistry scanning electrochemical microscopy |
资助者 | NSF-MRI grant ; KY NSF RSP grant ; KY NSF REG grant ; WKU Research Foundation RCAP internal Award ; Gatton Academy of Mathematics and Science |
DOI | 10.1007/s11664-020-08123-9 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | NSF-MRI grant[1429563] ; KY NSF RSP grant ; KY NSF REG grant ; WKU Research Foundation RCAP internal Award ; Gatton Academy of Mathematics and Science |
WOS研究方向 | Engineering ; Materials Science ; Physics |
WOS类目 | Engineering, Electrical & Electronic ; Materials Science, Multidisciplinary ; Physics, Applied |
WOS记录号 | WOS:000524922300005 |
出版者 | SPRINGER |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.imr.ac.cn/handle/321006/138226 |
专题 | 中国科学院金属研究所 |
通讯作者 | Gupta, Sanju |
作者单位 | 1.Western Kentucky Univ, Dept Phys & Astron, 1906 Coll Hts Blvd, Bowling Green, KY 42101 USA 2.CUNY City Coll, Dept Chem & Biochem, New York, NY 10031 USA 3.Western Kentucky Univ, Gatton Acad Math & Sci, Dept Phys & Astron, 1906 Coll Hts Blvd, Bowling Green, KY 42101 USA 4.Chinese Acad Sci, Inst Met Res, 72 Wenhua Rd, Shenyang 110016, Peoples R China |
推荐引用方式 GB/T 7714 | Gupta, Sanju,Ringo, Wyatt,Hu, Minmin,et al. Two-Dimensional Titanium Carbide (Ti3C2Tx) MXenes of Different Flake Sizes Studied by Scanning Electrochemical Microscopy in Different Electrolytes[J]. JOURNAL OF ELECTRONIC MATERIALS,2020,49(6):17. |
APA | Gupta, Sanju,Ringo, Wyatt,Hu, Minmin,&Wang, Xiaohui.(2020).Two-Dimensional Titanium Carbide (Ti3C2Tx) MXenes of Different Flake Sizes Studied by Scanning Electrochemical Microscopy in Different Electrolytes.JOURNAL OF ELECTRONIC MATERIALS,49(6),17. |
MLA | Gupta, Sanju,et al."Two-Dimensional Titanium Carbide (Ti3C2Tx) MXenes of Different Flake Sizes Studied by Scanning Electrochemical Microscopy in Different Electrolytes".JOURNAL OF ELECTRONIC MATERIALS 49.6(2020):17. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论