IMR OpenIR
Structure-related electrochemical performance of organosulfur compounds for lithium-sulfur batteries
Zhang, Xiaoyin1,2; Chen, Ke1,2; Sun, Zhenhua1,3; Hu, Guangjian1,3; Xiao, Ru1,3; Cheng, Hui-Ming1,2,4; Li, Feng1,3
通讯作者Sun, Zhenhua(zhsun@imr.ac.cn) ; Li, Feng(fli@imr.ac.cn)
2020-04-01
发表期刊ENERGY & ENVIRONMENTAL SCIENCE
ISSN1754-5692
卷号13期号:4页码:1076-1095
摘要Lithium-sulfur batteries (Li-S batteries) are promising next-generation energy storage devices due to their high theoretical energy density, low cost, and environmental compatibility. When trying to convert experiment into practice, one finds that sulfur cathodes, especially a cyclic octasulfur cathode, and lithium metal anodes present several problems, including sulfur shuttling, the fact that S is an insulator, complex 16-electron reactions, and the formation of lithium dendrites. In recent years, organosulfur compounds have been extensively investigated for Li-S batteries in order to solve these problems and understand the electrochemical process during their redox reactions. This review aims to summarize the different functions of organosulfur compounds, and figure out a guideline for understanding and using them in Li-S batteries. The organosulfur compounds currently used as active materials are classified into three types based on their electrochemical behavior, and design principles of the molecular and polymer structures of organosulfur compounds are concluded. Based on these design principles, we summarize how to control their electrochemical performance, and suggest possible electrochemical mechanisms and other characteristics. Finally, we propose guidelines for the development of promising organosulfur compounds using emerging technologies, including advanced characterization techniques, innovative methods of synthesis of such compounds, and machine-learning techniques.
资助者National Science Foundation of China ; Ministry of Science and Technology of China ; Strategic Priority Research Program of Chinese Academy of Science ; Youth Innovation Promotion Association of the Chinese Academy of Sciences ; Key Research Program of Chinese Academy of Sciences ; Program for Guangdong Introducing Innovative and Entrepreneurial Teams ; Development and Reform Commission of Shenzhen Municipality for the development of the Low-Dimensional Materials and Devices discipline and the Economic ; Bureau of Industry and Information Technology of Shenzhen for the 2017 Graphene Manufacturing Innovation Center Project
DOI10.1039/c9ee03848e
收录类别SCI
语种英语
资助项目National Science Foundation of China[51972313] ; National Science Foundation of China[51525206] ; National Science Foundation of China[51521091] ; Ministry of Science and Technology of China[2016YFA0200100] ; Ministry of Science and Technology of China[2016YFB0100100] ; Strategic Priority Research Program of Chinese Academy of Science[XDA22010602] ; Youth Innovation Promotion Association of the Chinese Academy of Sciences[2015150] ; Key Research Program of Chinese Academy of Sciences[KGZD-EW-T06] ; Program for Guangdong Introducing Innovative and Entrepreneurial Teams ; Development and Reform Commission of Shenzhen Municipality for the development of the Low-Dimensional Materials and Devices discipline and the Economic ; Bureau of Industry and Information Technology of Shenzhen for the 2017 Graphene Manufacturing Innovation Center Project[201901171523]
WOS研究方向Chemistry ; Energy & Fuels ; Engineering ; Environmental Sciences & Ecology
WOS类目Chemistry, Multidisciplinary ; Energy & Fuels ; Engineering, Chemical ; Environmental Sciences
WOS记录号WOS:000528728700001
出版者ROYAL SOC CHEMISTRY
引用统计
被引频次:165[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/138511
专题中国科学院金属研究所
通讯作者Sun, Zhenhua; Li, Feng
作者单位1.Chinese Acad Sci, Shenyang Natl Lab Mat Sci, Inst Met Res, Shenyang 110016, Peoples R China
2.ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
3.Univ Sci & Technol China, Sch Mat Sci & Engn, Hefei, Peoples R China
4.Tsinghua Univ, Tsinghua Berkeley Shenzhen Inst, Shenzhen Geim Graphene Ctr, Shenzhen 518055, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Xiaoyin,Chen, Ke,Sun, Zhenhua,et al. Structure-related electrochemical performance of organosulfur compounds for lithium-sulfur batteries[J]. ENERGY & ENVIRONMENTAL SCIENCE,2020,13(4):1076-1095.
APA Zhang, Xiaoyin.,Chen, Ke.,Sun, Zhenhua.,Hu, Guangjian.,Xiao, Ru.,...&Li, Feng.(2020).Structure-related electrochemical performance of organosulfur compounds for lithium-sulfur batteries.ENERGY & ENVIRONMENTAL SCIENCE,13(4),1076-1095.
MLA Zhang, Xiaoyin,et al."Structure-related electrochemical performance of organosulfur compounds for lithium-sulfur batteries".ENERGY & ENVIRONMENTAL SCIENCE 13.4(2020):1076-1095.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Xiaoyin]的文章
[Chen, Ke]的文章
[Sun, Zhenhua]的文章
百度学术
百度学术中相似的文章
[Zhang, Xiaoyin]的文章
[Chen, Ke]的文章
[Sun, Zhenhua]的文章
必应学术
必应学术中相似的文章
[Zhang, Xiaoyin]的文章
[Chen, Ke]的文章
[Sun, Zhenhua]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。