Microscopic stresses in carbon nanotube reinforced aluminum matrix composites determined by in-situ neutron diffraction | |
Zhang, X. X.1; Zhang, J. F.1; Liu, Z. Y.1; Gan, W. M.2; Hofmann, M.3; Andrae, H.4; Xiao, B. L.1; Ma, Z. Y.1 | |
通讯作者 | Xiao, B. L.(blxiao@imr.ac.cn) ; Ma, Z. Y.(zyma@imr.ac.cn) |
2020-10-01 | |
发表期刊 | JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
![]() |
ISSN | 1005-0302 |
卷号 | 54页码:58-68 |
摘要 | One of the most desired strengthening mechanisms in the carbon nanotube reinforced aluminum matrix composites (CNT/Al) composites is the load transfer strengthening mechanism (LTSM). However, a fundamental issue concerning the LTSM is that quantitative measurements of load partitioning in these composites during loading are very limited. In this study, in-situ neutron diffraction study on the tensile deformation of the 3 vol.% CNT/2009Al composite and the unreinforced 2009Al alloy was conducted. The {311} and {220} diffraction elastic constants (DECs) of the 2009Al alloy were determined. Using those DECs the average stress in the 2009Al matrix of the composite was calculated. Then the average stress in the CNTs was separated by using the stress equilibrium condition. Computational homogenization models were also applied to explain the stress evolution in each phase. Predicted results agree with experimental data. In the present case, the average stress in the CNTs reaches 1630 MPa at the yield strength of the composite based on linear regression of the measured data, which leads to an increment of yield strength by about 37 MPa. As the result of this work, an approach to quantify load partitioning in the CNTs is developed for the CNT/Al composites, which can be applied to optimize the mechanical properties of the composites.(C) 2020 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology. |
关键词 | Carbon nanotubes Aluminum matrix composites In-situ neutron diffraction Load partitioning |
资助者 | National Key R&D Program of China ; National Natural Science Foundation of China ; Key Research Program of Frontier Sciences, CAS |
DOI | 10.1016/j.jmst.2020.04.016 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Key R&D Program of China[2017YFB0703104] ; National Natural Science Foundation of China[51871214] ; National Natural Science Foundation of China[51931009] ; Key Research Program of Frontier Sciences, CAS[QYZDJ-SSW-JSC015] |
WOS研究方向 | Materials Science ; Metallurgy & Metallurgical Engineering |
WOS类目 | Materials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering |
WOS记录号 | WOS:000545310500007 |
出版者 | JOURNAL MATER SCI TECHNOL |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.imr.ac.cn/handle/321006/139719 |
专题 | 中国科学院金属研究所 |
通讯作者 | Xiao, B. L.; Ma, Z. Y. |
作者单位 | 1.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China 2.Helmholtz Zentrum Geesthacht, German Engn Mat Sci Ctr MLZ, D-85747 Garching, Germany 3.Tech Univ Munich, Heinz Maier Leibnitz Zentrum MLZ, D-85747 Garching, Germany 4.Fraunhofer Inst Ind Math, Fraunhofer Pl 1, D-67663 Kaiserslautern, Germany |
推荐引用方式 GB/T 7714 | Zhang, X. X.,Zhang, J. F.,Liu, Z. Y.,et al. Microscopic stresses in carbon nanotube reinforced aluminum matrix composites determined by in-situ neutron diffraction[J]. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY,2020,54:58-68. |
APA | Zhang, X. X..,Zhang, J. F..,Liu, Z. Y..,Gan, W. M..,Hofmann, M..,...&Ma, Z. Y..(2020).Microscopic stresses in carbon nanotube reinforced aluminum matrix composites determined by in-situ neutron diffraction.JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY,54,58-68. |
MLA | Zhang, X. X.,et al."Microscopic stresses in carbon nanotube reinforced aluminum matrix composites determined by in-situ neutron diffraction".JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 54(2020):58-68. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论