Role of Cu/graphene interface in suppressing fatigue damage of submicron Cu films for flexible electronics | |
Yang, Yu-Jia1; Zhang, Bin1; Wan, Hong-Yuan2,3; Zhang, Guang-Ping2 | |
Corresponding Author | Zhang, Bin(zhangb@atm.neu.edu.cn) ; Zhang, Guang-Ping(gpzhang@imr.ac.cn) |
2020-08-05 | |
Source Publication | MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING
![]() |
ISSN | 0921-5093 |
Volume | 792Pages:10 |
Abstract | To enhance the mechanical reliability without sacrificing the electrical conductivity of the flexible electronics, in this work submicmn-thick Cu/Au/PI (CAP) and graphene/Cu/Au/PI (GCAP) films were fabricated successfully by using a series of assembly methods through introducing a graphene passivation layer onto the polyimide (PI)-supported Cu film surface, and a nanoscale gold (Au) interlayer between the Cu/PI interface. Tensile testing results reveal that the yield strength, the fracture strain and the electrical properties of the GCAP film were improved simultaneously. Furthermore, the GCAP film also exhibited a higher fatigue strength than the CAP film. The basic mechanism is mainly attributed to the effective suppression of the Cu/graphene interface on the fatigue extrusion formation through constraining dislocation motion. |
Keyword | Cu Graphene Interface Fatigue extrusions Voids |
Funding Organization | National Natural Science Foundation of China (NSFC) |
DOI | 10.1016/j.msea.2020.139786 |
Indexed By | SCI |
Language | 英语 |
Funding Project | National Natural Science Foundation of China (NSFC)[51671050] ; National Natural Science Foundation of China (NSFC)[51971060] |
WOS Research Area | Science & Technology - Other Topics ; Materials Science ; Metallurgy & Metallurgical Engineering |
WOS Subject | Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering |
WOS ID | WOS:000553980500026 |
Publisher | ELSEVIER SCIENCE SA |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://ir.imr.ac.cn/handle/321006/140021 |
Collection | 中国科学院金属研究所 |
Corresponding Author | Zhang, Bin; Zhang, Guang-Ping |
Affiliation | 1.Northeastern Univ, Sch Mat Sci & Engn, Key Lab Anisotropy & Texture Mat, Minist Educ, 3-11 Wenhua Rd, Shenyang 110819, Peoples R China 2.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, 72 Wenhua Rd, Shenyang 110016, Peoples R China 3.Univ Sci & Technol China, Sch Mat Sci & Engn, 72 Wenhua Rd, Shenyang 110016, Peoples R China |
Recommended Citation GB/T 7714 | Yang, Yu-Jia,Zhang, Bin,Wan, Hong-Yuan,et al. Role of Cu/graphene interface in suppressing fatigue damage of submicron Cu films for flexible electronics[J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,2020,792:10. |
APA | Yang, Yu-Jia,Zhang, Bin,Wan, Hong-Yuan,&Zhang, Guang-Ping.(2020).Role of Cu/graphene interface in suppressing fatigue damage of submicron Cu films for flexible electronics.MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,792,10. |
MLA | Yang, Yu-Jia,et al."Role of Cu/graphene interface in suppressing fatigue damage of submicron Cu films for flexible electronics".MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING 792(2020):10. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment