IMR OpenIR
Cyclic strain amplitude-dependent fatigue mechanism of gradient nanograined Cu
Pan, Q. S.; Long, J. Z.; Jing, L. J.; Tao, N. R.; Lu, L.
通讯作者Lu, L.(llu@imr.ac.cn)
2020-09-01
发表期刊ACTA MATERIALIA
ISSN1359-6454
卷号196页码:252-260
摘要Different grain coarsening behaviors (i.e. abnormal and homogeneous) are prevalently observed in gradient nanograined (GNG) Cu under stress controlled high-cycle and strain controlled low-cycle fatigue tests, respectively. In this paper, to comprehensively understand the intrinsic fatigue mechanism of gradient nanograined structures, both high and low cycle fatigue behaviors of GNG Cu are investigated under strain-controlled fatigue tests with a wide strain amplitude ranges. Cyclic behavior transition from abnormal grain coarsening at small strain amplitude to homogeneous grain coarsening at large strain amplitude is observd in GNG Cu. Microstrucural analysis reveals that the grain coarsening behavior in either abnormal or normal (homogeneous) mode is closely related to the spatial distribution of the cyclic plastic strain in the GNG layer (localized or delocalized) under cyclic loading. Such unique cyclic strain amplitude-dependent fatigue behavior is inherent to the gradient nanostructure, which fundamentally differs from the conventional strain localizing mechanism in metals with homogeneous structures under cyclic loading. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
关键词Gradient nanograin (GNG) Cyclic response Grain coarsening Strain delocalization Fatigue mechanism
资助者National Science Foundation of China (NSFC) ; Key Research Program of Frontier Science, CAS ; International partnership program, CAS ; LiaoNing Revitalization Talents Program ; NSFC ; Youth Innovation Promotion Association CAS
DOI10.1016/j.actamat.2020.06.047
收录类别SCI
语种英语
资助项目National Science Foundation of China (NSFC)[U1608257] ; National Science Foundation of China (NSFC)[51931010] ; Key Research Program of Frontier Science, CAS[GJHZ2029] ; International partnership program, CAS[GJHZ2029] ; LiaoNing Revitalization Talents Program[XLYC1802026] ; NSFC[51601196] ; Youth Innovation Promotion Association CAS[2019196]
WOS研究方向Materials Science ; Metallurgy & Metallurgical Engineering
WOS类目Materials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering
WOS记录号WOS:000557651000024
出版者PERGAMON-ELSEVIER SCIENCE LTD
引用统计
被引频次:21[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/140211
专题中国科学院金属研究所
通讯作者Lu, L.
作者单位Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Liaoning, Peoples R China
推荐引用方式
GB/T 7714
Pan, Q. S.,Long, J. Z.,Jing, L. J.,et al. Cyclic strain amplitude-dependent fatigue mechanism of gradient nanograined Cu[J]. ACTA MATERIALIA,2020,196:252-260.
APA Pan, Q. S.,Long, J. Z.,Jing, L. J.,Tao, N. R.,&Lu, L..(2020).Cyclic strain amplitude-dependent fatigue mechanism of gradient nanograined Cu.ACTA MATERIALIA,196,252-260.
MLA Pan, Q. S.,et al."Cyclic strain amplitude-dependent fatigue mechanism of gradient nanograined Cu".ACTA MATERIALIA 196(2020):252-260.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Pan, Q. S.]的文章
[Long, J. Z.]的文章
[Jing, L. J.]的文章
百度学术
百度学术中相似的文章
[Pan, Q. S.]的文章
[Long, J. Z.]的文章
[Jing, L. J.]的文章
必应学术
必应学术中相似的文章
[Pan, Q. S.]的文章
[Long, J. Z.]的文章
[Jing, L. J.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。