Cyclic strain amplitude-dependent fatigue mechanism of gradient nanograined Cu | |
Pan, Q. S.; Long, J. Z.; Jing, L. J.; Tao, N. R.; Lu, L. | |
通讯作者 | Lu, L.(llu@imr.ac.cn) |
2020-09-01 | |
发表期刊 | ACTA MATERIALIA
![]() |
ISSN | 1359-6454 |
卷号 | 196页码:252-260 |
摘要 | Different grain coarsening behaviors (i.e. abnormal and homogeneous) are prevalently observed in gradient nanograined (GNG) Cu under stress controlled high-cycle and strain controlled low-cycle fatigue tests, respectively. In this paper, to comprehensively understand the intrinsic fatigue mechanism of gradient nanograined structures, both high and low cycle fatigue behaviors of GNG Cu are investigated under strain-controlled fatigue tests with a wide strain amplitude ranges. Cyclic behavior transition from abnormal grain coarsening at small strain amplitude to homogeneous grain coarsening at large strain amplitude is observd in GNG Cu. Microstrucural analysis reveals that the grain coarsening behavior in either abnormal or normal (homogeneous) mode is closely related to the spatial distribution of the cyclic plastic strain in the GNG layer (localized or delocalized) under cyclic loading. Such unique cyclic strain amplitude-dependent fatigue behavior is inherent to the gradient nanostructure, which fundamentally differs from the conventional strain localizing mechanism in metals with homogeneous structures under cyclic loading. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. |
关键词 | Gradient nanograin (GNG) Cyclic response Grain coarsening Strain delocalization Fatigue mechanism |
资助者 | National Science Foundation of China (NSFC) ; Key Research Program of Frontier Science, CAS ; International partnership program, CAS ; LiaoNing Revitalization Talents Program ; NSFC ; Youth Innovation Promotion Association CAS |
DOI | 10.1016/j.actamat.2020.06.047 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Science Foundation of China (NSFC)[U1608257] ; National Science Foundation of China (NSFC)[51931010] ; Key Research Program of Frontier Science, CAS[GJHZ2029] ; International partnership program, CAS[GJHZ2029] ; LiaoNing Revitalization Talents Program[XLYC1802026] ; NSFC[51601196] ; Youth Innovation Promotion Association CAS[2019196] |
WOS研究方向 | Materials Science ; Metallurgy & Metallurgical Engineering |
WOS类目 | Materials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering |
WOS记录号 | WOS:000557651000024 |
出版者 | PERGAMON-ELSEVIER SCIENCE LTD |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.imr.ac.cn/handle/321006/140211 |
专题 | 中国科学院金属研究所 |
通讯作者 | Lu, L. |
作者单位 | Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Liaoning, Peoples R China |
推荐引用方式 GB/T 7714 | Pan, Q. S.,Long, J. Z.,Jing, L. J.,et al. Cyclic strain amplitude-dependent fatigue mechanism of gradient nanograined Cu[J]. ACTA MATERIALIA,2020,196:252-260. |
APA | Pan, Q. S.,Long, J. Z.,Jing, L. J.,Tao, N. R.,&Lu, L..(2020).Cyclic strain amplitude-dependent fatigue mechanism of gradient nanograined Cu.ACTA MATERIALIA,196,252-260. |
MLA | Pan, Q. S.,et al."Cyclic strain amplitude-dependent fatigue mechanism of gradient nanograined Cu".ACTA MATERIALIA 196(2020):252-260. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论