Deposition of highly adhesive nanocrystalline diamond films on Ti substrates via diamond/SiC composite interlayers | |
Yang, Bing1; Li, Haining1,2; Yu, Biao1,2; Huang, Nan1; Liu, Lusheng1; Jiang, Xin1 | |
通讯作者 | Yang, Bing(byang@imr.ac.cn) ; Jiang, Xin(xjiang@imr.ac.cn) |
2020-10-01 | |
发表期刊 | DIAMOND AND RELATED MATERIALS
![]() |
ISSN | 0925-9635 |
卷号 | 108页码:10 |
摘要 | Diamond/SiC interlayer with intermediate thermal expansion coefficient is introduced for improving the adhesion of NCD films on Ti substrate. Herein, tetramethylsilane (TMS) gas is added to produce SiC phase, forming a diamond/SiC interlayer. The effect of TMS gas flow on the microstructural evolution of the interfacial layer and the film adhesion is systematically investigated. At TMS gas flow of 5 sccm, the NCD film shows an interlayer of about 15% SiC by phase area statistics in SEM image. This film exhibits the lowest residual compressive stress of 1.64 GPa and the optimum adhesion of about 28.2 +/- 2 N against Ti substrate. Increasing TMS gas flow leads to the increase of SiC content and the grain refinement of diamond in the interlayers. It is found that Ti silicide and hydride with increased amount are formed in the Ti substrate at higher TMS gas flow. The presence of these Ti intermetallic compounds with larger thermal expansion coefficient results in the increased residual stress and poorer adhesion in the NCD films. On the basis of reduction of Ti intermetallic compounds, the addition of TMS gas flow at 5 sccm is crucial for the preparation of good-adhesion NCD films on Ti substrate. |
关键词 | Diamond film Chemical vapor deposition Microstructure Film adhesion High resolution transmission electron microscopy |
资助者 | National Natural Science Foundation of China ; Liaoning Provincial Natural Science Foundation of China ; Institute of Metal Research, Chinese Academy of Sciences |
DOI | 10.1016/j.diamond.2020.107928 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[51872294] ; Liaoning Provincial Natural Science Foundation of China[Y931L90381] ; Institute of Metal Research, Chinese Academy of Sciences[Y5NCA111A1] ; Institute of Metal Research, Chinese Academy of Sciences[Y6NC6F1161] |
WOS研究方向 | Materials Science ; Physics |
WOS类目 | Materials Science, Multidisciplinary ; Materials Science, Coatings & Films ; Physics, Applied ; Physics, Condensed Matter |
WOS记录号 | WOS:000569885400012 |
出版者 | ELSEVIER SCIENCE SA |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.imr.ac.cn/handle/321006/140506 |
专题 | 中国科学院金属研究所 |
通讯作者 | Yang, Bing; Jiang, Xin |
作者单位 | 1.Chinese Acad Sci, Inst Met Res IMR, Shenyang Natl Lab Mat Sci, 72 Wenhua Rd, Shenyang 110016, Peoples R China 2.Univ Sci & Technol China, Dept Mat Sci & Engn, Hefei 230026, Peoples R China |
推荐引用方式 GB/T 7714 | Yang, Bing,Li, Haining,Yu, Biao,et al. Deposition of highly adhesive nanocrystalline diamond films on Ti substrates via diamond/SiC composite interlayers[J]. DIAMOND AND RELATED MATERIALS,2020,108:10. |
APA | Yang, Bing,Li, Haining,Yu, Biao,Huang, Nan,Liu, Lusheng,&Jiang, Xin.(2020).Deposition of highly adhesive nanocrystalline diamond films on Ti substrates via diamond/SiC composite interlayers.DIAMOND AND RELATED MATERIALS,108,10. |
MLA | Yang, Bing,et al."Deposition of highly adhesive nanocrystalline diamond films on Ti substrates via diamond/SiC composite interlayers".DIAMOND AND RELATED MATERIALS 108(2020):10. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论