Effect of debinding temperature under an argon atmosphere on the microstructure and properties of 3D-printed alumina ceramics | |
Li, He1,2; Liu, Yongsheng1,2; Liu, Yansong1,2; Zeng, Qingfeng1; Hu, Kehui3,4; Lu, Zhigang3,4; Liang, Jingjing5 | |
通讯作者 | Liu, Yongsheng(yongshengliu@nwpu.edu.cn) |
2020-10-01 | |
发表期刊 | MATERIALS CHARACTERIZATION
![]() |
ISSN | 1044-5803 |
卷号 | 168页码:10 |
摘要 | Debinding at different temperatures under an argon atmosphere, combined with sintering, was used to obtain alumina ceramics fabricated from stereolithography-based 3D printing. The effect of debinding temperature under an argon atmosphere on the microstructure, physical, and mechanical properties were investigated. The results showed that the alumina ceramics had a layered structure, and the interlayer spacing first increased and then decreased with the debinding temperature. Some carbon residue was observed when debinding was performed between 350 and 450 degrees C, and no residual carbon was observed when the debinding temperature was higher than 500 degrees C. The shrinkage in the Z direction was much greater than that of the X or Y directions due to layer-by-layer forming mode. There was a slight fluctuation in mechanical properties such as flexural strength (18.9-22.3 MPa), Vickers hardness (110.6-173.7 HV), and nano-indentation hardness (16.9-22.6 GPa). The optimal debinding temperature was 500 degrees C under an argon atmosphere, which displayed a shrinkage of 2.3% in the X direction, 1.9% in the Y direction, and 3.4% in the Z direction. At this temperature, the flexural strength of the ceramics was 22.3 MPa and the open porosity of the ceramics was 35.6%. |
关键词 | Debinding temperature Argon atmosphere Alumina ceramics Flexural strength Stereolithography |
资助者 | National Key Research and Development Program of China ; Chinese National Foundation for Natural Sciences ; Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University |
DOI | 10.1016/j.matchar.2020.110548 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Key Research and Development Program of China[2018YFB1106600] ; Chinese National Foundation for Natural Sciences[51672217] ; Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University[CX202006] |
WOS研究方向 | Materials Science ; Metallurgy & Metallurgical Engineering |
WOS类目 | Materials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering ; Materials Science, Characterization & Testing |
WOS记录号 | WOS:000571730700001 |
出版者 | ELSEVIER SCIENCE INC |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.imr.ac.cn/handle/321006/140676 |
专题 | 中国科学院金属研究所 |
通讯作者 | Liu, Yongsheng |
作者单位 | 1.Northwestern Polytech Univ, Sci & Technol Thermostruct Composite Mat Lab, Xian 710072, Shaanxi, Peoples R China 2.Northwestern Polytech Univ, NPU SAS Joint Res Ctr Adv Ceram, Xian 710072, Shaanxi, Peoples R China 3.Tsinghua Univ, Dept Mech Engn, Beijing 100084, Peoples R China 4.Tsinghua Univ, State Key Lab Tribol, Beijing 100084, Peoples R China 5.Chinese Acad Sci, Inst Met Res, Shenyang 110016, Peoples R China |
推荐引用方式 GB/T 7714 | Li, He,Liu, Yongsheng,Liu, Yansong,et al. Effect of debinding temperature under an argon atmosphere on the microstructure and properties of 3D-printed alumina ceramics[J]. MATERIALS CHARACTERIZATION,2020,168:10. |
APA | Li, He.,Liu, Yongsheng.,Liu, Yansong.,Zeng, Qingfeng.,Hu, Kehui.,...&Liang, Jingjing.(2020).Effect of debinding temperature under an argon atmosphere on the microstructure and properties of 3D-printed alumina ceramics.MATERIALS CHARACTERIZATION,168,10. |
MLA | Li, He,et al."Effect of debinding temperature under an argon atmosphere on the microstructure and properties of 3D-printed alumina ceramics".MATERIALS CHARACTERIZATION 168(2020):10. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论