IMR OpenIR
Oxygen vacancy enhanced ferroelectricity in BTO:SRO nanocomposite films
Lin, Jun Liang1,3; He, Ri2; Lu, Zengxing2; Lu, Yi4; Wang, Zhiming2; Zhong, Zhicheng2; Zhao, Xiang1; Li, Run-Wei2; Zhang, Zhi Dong3; Wang, Zhan Jie5
通讯作者Zhong, Zhicheng(zhong@nimte.ac.cn) ; Wang, Zhan Jie(wangzj@imr.ac.cn)
2020-10-15
发表期刊ACTA MATERIALIA
ISSN1359-6454
卷号199页码:9-18
摘要The enhancement of ferroelectric properties in lead-free ferroelectric is usually achieved by strain engineering. Here, we report a surprising polarization enhancement effect in an isostructural ferroelectric nanocomposite system composited by the ferroelectric material of BaTiO3 and metallic non-ferroelectric oxide of SrRuO3. BaTiO3:SrRuO3 (BTO:SRO) ferroelectric nanocomposite films with the volume ratio of nanogranular SRO ranging from 0 to 16% grown on the Nb-doped SrTiO3 (NSTO) single-crystal substrates by pulsed laser deposition (PLD) are investigated. Robust ferroelectric polarization is observed with a remanent polarization of about 40 mu C/cm(2), comparable to those found in Pb(ZrxTi1-x)O-3 thin films. By combining X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), density functional theory (DFT) calculations, and phase-field simulation, a hypothesis has been proposed that the polarization enhancement may be mainly attributed to the accumulation of oxygen vacancies at the BTO/SRO interface rather than lattice mismatch strain. The novel mechanism of polarization enhancement opens new possibilities for designing future ferroelectric devices. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
关键词Nanocomposite Ferroelectricity Laser deposition Oxygen vacancy First-principles calculations
资助者basic scientific research projects of colleges and universities of Liaoning Province ; major project of Industrial Technology Research Institute of Liaoning Colleges and Universities ; National Basic Research Program of China ; National Key R and D Program of China ; National Nature Science Foundation of China
DOI10.1016/j.actamat.2020.08.016
收录类别SCI
语种英语
资助项目basic scientific research projects of colleges and universities of Liaoning Province[LZGD2017005] ; major project of Industrial Technology Research Institute of Liaoning Colleges and Universities[201824010] ; National Basic Research Program of China[2017YFA0206302] ; National Key R and D Program of China[2017YFA0303602] ; National Nature Science Foundation of China[11774360]
WOS研究方向Materials Science ; Metallurgy & Metallurgical Engineering
WOS类目Materials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering
WOS记录号WOS:000577994500002
出版者PERGAMON-ELSEVIER SCIENCE LTD
引用统计
被引频次:21[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/141014
专题中国科学院金属研究所
通讯作者Zhong, Zhicheng; Wang, Zhan Jie
作者单位1.Northeastern Univ, Sch Mat Sci & Engn, Shenyang 110819, Peoples R China
2.Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Key Lab Magnet Mat & Devices, Zhejiang Prov Key Lab Magnet Mat & Applicat Techn, Ningbo 315201, Peoples R China
3.Chinese Acad Sci, Inst Met Res IMR, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
4.Heidelberg Univ, Inst Theoret Phys, D-69120 Heidelberg, Germany
5.Shenyang Univ Technol, Sch Mat Sci & Engn, Shenyang 110870, Peoples R China
推荐引用方式
GB/T 7714
Lin, Jun Liang,He, Ri,Lu, Zengxing,et al. Oxygen vacancy enhanced ferroelectricity in BTO:SRO nanocomposite films[J]. ACTA MATERIALIA,2020,199:9-18.
APA Lin, Jun Liang.,He, Ri.,Lu, Zengxing.,Lu, Yi.,Wang, Zhiming.,...&Wang, Zhan Jie.(2020).Oxygen vacancy enhanced ferroelectricity in BTO:SRO nanocomposite films.ACTA MATERIALIA,199,9-18.
MLA Lin, Jun Liang,et al."Oxygen vacancy enhanced ferroelectricity in BTO:SRO nanocomposite films".ACTA MATERIALIA 199(2020):9-18.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lin, Jun Liang]的文章
[He, Ri]的文章
[Lu, Zengxing]的文章
百度学术
百度学术中相似的文章
[Lin, Jun Liang]的文章
[He, Ri]的文章
[Lu, Zengxing]的文章
必应学术
必应学术中相似的文章
[Lin, Jun Liang]的文章
[He, Ri]的文章
[Lu, Zengxing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。