Enhanced combination of mechanical properties and electrical conductivity of a hard state Cu-Cr-Zr alloy via one-step friction stir processing | |
Wang, Y. D.1,2; Liu, M.1,2; Yu, B. H.1; Wu, L. H.1; Xue, P.1; Ni, D. R.1; Ma, Z. Y.1 | |
通讯作者 | Xue, P.() ; Ni, D. R.(pxue@imr.ac.cn) |
2021-02-01 | |
发表期刊 | JOURNAL OF MATERIALS PROCESSING TECHNOLOGY
![]() |
ISSN | 0924-0136 |
卷号 | 288页码:9 |
摘要 | How to coordinate the strength, ductility and electrical conductivity of Cu-Cr-Zr alloys has always been a difficult problem. Unlike most of previous reports on processing soft state (solution state) alloys, in the present study, a hard state (aged state) Cu-Cr-Zr alloy was subjected to one-step friction stir processing (FSP) at room temperature with more attentions paid to the evolution of grains and precipitates, and their effects on the mechanical and electrical properties. The results showed that the precipitates played a key role in grain refinement, and ultrafine grains (UFG) with an average size of 250 nm were produced after FSP. Many fine precipitates (average size of 3.1 nm) were uniformly distributed in the grains, neither dissolved nor obviously coarsened. Excellent comprehensive properties of high tensile strength (702 MPa), good elongation (16%) and electrical conductivity (74.3% IACS) were achieved in the FSP sample. Furthermore, this one-step FSP method does not need subsequent aging treatment which is indispensable for conventional processing methods, providing a simplified and efficient method for improving the performance of Cu-Cr-Zr alloys. |
关键词 | Cu-Cr-Zr alloy friction stir processing ultrafine grains tensile strength electrical conductivity |
资助者 | National Natural Science Foundation of China ; Youth Innovation Promotion Association of the Chinese Academy of Sciences |
DOI | 10.1016/j.jmatprotec.2020.116880 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[U1760201] ; Youth Innovation Promotion Association of the Chinese Academy of Sciences[2017236] |
WOS研究方向 | Engineering ; Materials Science |
WOS类目 | Engineering, Industrial ; Engineering, Manufacturing ; Materials Science, Multidisciplinary |
WOS记录号 | WOS:000582804800034 |
出版者 | ELSEVIER SCIENCE SA |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.imr.ac.cn/handle/321006/141333 |
专题 | 中国科学院金属研究所 |
通讯作者 | Xue, P.; Ni, D. R. |
作者单位 | 1.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, 72 Wenhua Rd, Shenyang 110016, Peoples R China 2.Univ Sci & Technol China, Sch Mat Sci & Engn, 72 Wenhua Rd, Shenyang 110016, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, Y. D.,Liu, M.,Yu, B. H.,et al. Enhanced combination of mechanical properties and electrical conductivity of a hard state Cu-Cr-Zr alloy via one-step friction stir processing[J]. JOURNAL OF MATERIALS PROCESSING TECHNOLOGY,2021,288:9. |
APA | Wang, Y. D..,Liu, M..,Yu, B. H..,Wu, L. H..,Xue, P..,...&Ma, Z. Y..(2021).Enhanced combination of mechanical properties and electrical conductivity of a hard state Cu-Cr-Zr alloy via one-step friction stir processing.JOURNAL OF MATERIALS PROCESSING TECHNOLOGY,288,9. |
MLA | Wang, Y. D.,et al."Enhanced combination of mechanical properties and electrical conductivity of a hard state Cu-Cr-Zr alloy via one-step friction stir processing".JOURNAL OF MATERIALS PROCESSING TECHNOLOGY 288(2021):9. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论