Previous studies have shown that strain-controlled cyclic stability was maintained in bulk Cu samples with highly oriented nanoscale twins. In order to explore the underlying fatigue mechanism, transmission electron microscopy observations under two-beam diffraction condition were utilized to charac-terize the dislocation configurations in the twin/matrix layers of as-fatigued nanotwinned Cu. It was clarified that the threading dislocations with Burgers vector parallel to twin boundaries are mainly active during fatigue. A three-dimensional stereo projection was re-configured for demonstrating the special structure of dislocations in nanoscale twins.
其他摘要
Previous studies have shown that strain-controlled cyclic stability was maintained in bulk Cu samples with highly oriented nanoscale twins. In order to explore the underlying fatigue mechanism, transmission electron microscopy observations under two-beam diffraction condition were utilized to charac-terize the dislocation configurations in the twin/matrix layers of as-fatigued nanotwinned Cu. It was clarified that the threading dislocations with Burgers vector parallel to twin boundaries are mainly active during fatigue. A three-dimensional stereo projection was re-configured for demonstrating the special structure of dislocations in nanoscale twins.
修改评论