IMR OpenIR
Analysis and numerical simulation of rolling contact between sphere and cone
其他题名Analysis and Numerical Simulation of Rolling Contact between Sphere and Cone
Zhao Yanling1; Xia Chengtao1; Wang Hongbo2; Xuan Jiaping2; Xiang Jingzhong1; Liu Xianli1; Su Xiangguo1
2015
发表期刊CHINESE JOURNAL OF MECHANICAL ENGINEERING
ISSN1000-9345
卷号28期号:3页码:521-529
摘要In non-conforming rolling contact, the contact stress is highly concentrated in the contact area. However, there are some limitations of the special contact model and stress model used for the theoretical study of the phenomenon, and this has prevented in-depth analysis of the associated friction, wear, and failure. This paper is particularly aimed at investigating the area of rolling contact between a sphere and a cone, for which purpose the boundary is determined by the Hertz theory and the geometries of the non-conforming surfaces. The phenomenon of stick-slip contact is observed to occur in the contact area under the condition of no-full-slip (Q < mu center dot P). Using the two-dimensional rolling contact theory developed by CARTER, the relative positions of the stick and slip regions and the distribution of the tangential force over the contact area are analyzed. Furthermore, each stress component is calculated based on the McEwen theory and the idea of narrow band. The stress equations for the three-dimensional rolling contact between the sphere and the cone are obtained by the principle of superposition, and are used to perform some numerical simulations. The results show that the stress components have a large gradient along the boundary between the stick and slip regions, and that the maximum stress is inversely proportional to the contact coefficient and proportional to the friction coefficient. A new method for investigating the stress during non-classical three-dimensional rolling contact is proposed as a theoretical foundation for the analysis of the associated friction, wear, and failure.
其他摘要In non-conforming rolling contact, the contact stress is highly concentrated in the contact area. However, there are some limitations of the special contact model and stress model used for the theoretical study of the phenomenon, and this has prevented in-depth analysis of the associated friction, wear, and failure. This paper is particularly aimed at investigating the area of rolling contact between a sphere and a cone, for which purpose the boundary is determined by the Hertz theory and the geometries of the non-conforming surfaces. The phenomenon of stick-slip contact is observed to occur in the contact area under the condition of no-full-slip (Q < μ · P). Using the two-dimensional rolling contact theory developed by CARTER, the relative positions of the stick and slip regions and the distribution of the tangential force over the contact area are analyzed. Furthermore, each stress component is calculated based on the McEwen theory and the idea of narrow band. The stress equations for the three-dimensional rolling contact between the sphere and the cone are obtained by the principle of superposition, and are used to perform some numerical simulations. The results show that the stress components have a large gradient along the boundary between the stick and slip regions, and that the maximum stress is inversely proportional to the contact coefficient and proportional to the friction coefficient. A new method for investigating the stress during non-classical three-dimensional rolling contact is proposed as a theoretical foundation for the analysis of the associated friction, wear, and failure.
关键词FINITE-ELEMENT-ANALYSIS STRESS-ANALYSIS RAIL FRICTION WHEEL SYSTEM STATE tractive rolling Hertz theory stick-slip contact contact area contact stress
收录类别CSCD
语种英语
资助项目[National Natural Science Foundation of China]
CSCD记录号CSCD:5411362
引用统计
被引频次:7[CSCD]   [CSCD记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/147343
专题中国科学院金属研究所
作者单位1.哈尔滨学院
2.中国科学院金属研究所
推荐引用方式
GB/T 7714
Zhao Yanling,Xia Chengtao,Wang Hongbo,et al. Analysis and numerical simulation of rolling contact between sphere and cone[J]. CHINESE JOURNAL OF MECHANICAL ENGINEERING,2015,28(3):521-529.
APA Zhao Yanling.,Xia Chengtao.,Wang Hongbo.,Xuan Jiaping.,Xiang Jingzhong.,...&Su Xiangguo.(2015).Analysis and numerical simulation of rolling contact between sphere and cone.CHINESE JOURNAL OF MECHANICAL ENGINEERING,28(3),521-529.
MLA Zhao Yanling,et al."Analysis and numerical simulation of rolling contact between sphere and cone".CHINESE JOURNAL OF MECHANICAL ENGINEERING 28.3(2015):521-529.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhao Yanling]的文章
[Xia Chengtao]的文章
[Wang Hongbo]的文章
百度学术
百度学术中相似的文章
[Zhao Yanling]的文章
[Xia Chengtao]的文章
[Wang Hongbo]的文章
必应学术
必应学术中相似的文章
[Zhao Yanling]的文章
[Xia Chengtao]的文章
[Wang Hongbo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。