IMR OpenIR
An Adaptive UKF Algorithm for the State and Parameter Estimations of a Mobile Robot
其他题名An Adaptive UKF Algorithm for the State and Parameter Estimations of a Mobile Robot
SONG Qi; HAN JianDa
2008
发表期刊自动化学报
ISSN0254-4156
卷号000期号:1.0页码:72-79
摘要For improving the estimation accuracy and the convergence speed of the unscented Kalman filter (UKF), a novel adaptive filter method is proposed. The error between the covariance matrices of innovation measurements and their corresponding estimations/predictions is utilized as the cost function. On the basis of the MIT rule, an adaptive algorithm is designed to update the covariance of the process uncertainties online by minimizing the cost function. The updated covariance is fed back into the normal UKF. Such an adaptive mechanism is intended to compensate the lack of a priori knowledge of the process uncertainty distribution and to improve the performance of UKF for the active state and parameter estimations. The asymptotic properties of this adaptive UKF are discussed. Simulations are conducted using an omni-directional mobile robot, and the results are compared with those obtained by normal UKF to demonstrate its effectiveness and advantage over the previous methods.
其他摘要For improving the estimation accuracy and the convergence speed of the unscented Kalman filter (UKF), a novel adaptive filter method is proposed. The error between the covariance matrices of innovation measurements and their corresponding estimations/predictions is utilized as the cost function. On the basis of the MIT rule, an adaptive algorithm is designed to update the covariance of the process uncertainties online by minimizing the cost function. The updated covariance is fed back into the normal UKF. Such an adaptive mechanism is intended to compensate the lack of a priori knowledge of the process uncertainty distribution and to improve the performance of UKF for the active state and parameter estimations. The asymptotic properties of this adaptive UKF are discussed. Simulations are conducted using an omni-directional mobile robot, and the results are compared with those obtained by normal UKF to demonstrate its effectiveness and advantage over the previous methods.
关键词卡尔曼滤波器算法 移动式遥控装置 状态估计 参数估计 过程协方差
收录类别CSCD
语种中文
CSCD记录号CSCD:3270063
引用统计
被引频次:22[CSCD]   [CSCD记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/148222
专题中国科学院金属研究所
作者单位中国科学院金属研究所
推荐引用方式
GB/T 7714
SONG Qi,HAN JianDa. An Adaptive UKF Algorithm for the State and Parameter Estimations of a Mobile Robot[J]. 自动化学报,2008,000(1.0):72-79.
APA SONG Qi,&HAN JianDa.(2008).An Adaptive UKF Algorithm for the State and Parameter Estimations of a Mobile Robot.自动化学报,000(1.0),72-79.
MLA SONG Qi,et al."An Adaptive UKF Algorithm for the State and Parameter Estimations of a Mobile Robot".自动化学报 000.1.0(2008):72-79.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[SONG Qi]的文章
[HAN JianDa]的文章
百度学术
百度学术中相似的文章
[SONG Qi]的文章
[HAN JianDa]的文章
必应学术
必应学术中相似的文章
[SONG Qi]的文章
[HAN JianDa]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。