IMR OpenIR
Additively manufactured biomedical Ti-Nb-Ta-Zr lattices with tunable Young's modulus: Mechanical property, biocompatibility, and proteomics analysis
Luo, J. P.; Huang, Y. J.; Xu, J. Y.; Sun, J. F.; Dargusch, M. S.; Hou, C. H.; Ren, L.; Wang, R. Z.; Ebel, T.; Yan, M.
2020-09-01
发表期刊MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS
卷号114
摘要Some beta-Ti alloys, such as Ti-Nb-Ta-Zr (TNTZ) alloys, exhibit a low Young's modulus and excellent biocompatibility. These alloys are promising new generation biomedical implant materials. Selective laser melting (SLM) can further enable customer-specific manufacturing of beta-Ti alloys to satisfy the ever-increasing need for enhanced biomedical products. In this study, we quantitatively determined the relationships between porosity, yield strength, and Young's modulus of SLM-prepared TNTZ lattices. The study constitutes a critical step toward understanding the behavior of the lattice and eventually enables tuning the Young's modulus to match that of human bones. Fatigue properties were also investigated on as-printed lattices in terms of the stress limit. The biocompatibility study included a routine evaluation of the relative cell growth rate and a proteomics analysis using a common mouse fibroblast cell line, L929. The results indicated that the as-printed TNTZ samples exhibited evidence of protein proliferation of the L929 cells, particularly P06733, and that those proteins are responsible for biological processes and molecular functions. They in turn may have promoted cell regeneration, cell motility, and protein binding, which at least partially explains the good biocompatibility of the as-printed TNTZ at the protein level. The study highlights the promising applications of additively manufactured TNTZ as a bone-replacing material from mechanical and biocompatibility perspectives.
DOI10.1016/j.msec.2020.110903
WOS记录号WOS:000579654700011
引用统计
被引频次:47[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/155676
专题中国科学院金属研究所
推荐引用方式
GB/T 7714
Luo, J. P.,Huang, Y. J.,Xu, J. Y.,et al. Additively manufactured biomedical Ti-Nb-Ta-Zr lattices with tunable Young's modulus: Mechanical property, biocompatibility, and proteomics analysis[J]. MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS,2020,114.
APA Luo, J. P..,Huang, Y. J..,Xu, J. Y..,Sun, J. F..,Dargusch, M. S..,...&Yan, M..(2020).Additively manufactured biomedical Ti-Nb-Ta-Zr lattices with tunable Young's modulus: Mechanical property, biocompatibility, and proteomics analysis.MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS,114.
MLA Luo, J. P.,et al."Additively manufactured biomedical Ti-Nb-Ta-Zr lattices with tunable Young's modulus: Mechanical property, biocompatibility, and proteomics analysis".MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS 114(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Luo, J. P.]的文章
[Huang, Y. J.]的文章
[Xu, J. Y.]的文章
百度学术
百度学术中相似的文章
[Luo, J. P.]的文章
[Huang, Y. J.]的文章
[Xu, J. Y.]的文章
必应学术
必应学术中相似的文章
[Luo, J. P.]的文章
[Huang, Y. J.]的文章
[Xu, J. Y.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。