IMR OpenIR
Integrating data mining and machine learning to discover high-strength ductile titanium alloys
Zou, Chengxiong1; Li, Jinshan1; Wang, William Yi1; Zhang, Ying1; Lin, Deye2; Yuan, Ruihao1; Wang, Xiaodan1; Tang, Bin1; Wang, Jun1; Gao, Xingyu3; Kou, Hongchao1; Hui, Xidong4; Zeng, Xiaoqin5; Qian, Ma6; Song, Haifeng3; Liu, Zi-Kui7; Xu, Dongsheng8
通讯作者Li, Jinshan(ljsh@nwpu.edu.cn) ; Wang, William Yi(wywang@nwpu.edu.cn) ; Song, Haifeng(song_haifeng@iapcm.ac.cn)
2021
发表期刊ACTA MATERIALIA
ISSN1359-6454
卷号202页码:211-221
摘要Based on the growing power of computational capabilities and algorithmic developments, with the help of data-driven and high-throughput calculations, a new paradigm accelerating materials discovery, design and optimization is emerging. Titanium (Ti) alloys have been chosen herein to highlight an integrated computational materials engineering case study with the aim of improving their strength and ductility. The electronic properties of elemental building blocks were derived from high-throughput first-principles calculations and presented in the form of the Mendeleev periodic table, including their electron work function (Phi), Fermi energy (E-F), bonding charge density (Delta rho), and lattice distortion energy. The atomic and electronic insights of the composition-structure-property relationships were revealed by a data mining approach, addressing the key features/principles for the design strategies of advanced alloys. Guided by defect engineering, the deformation fault energy and dislocation width were treated as the dominating criteria in improving the ductility. The proposed yield strength model was utilized quantitatively to present the contributions of solid-solution strengthening and grain refinement hardening. Machine learning was used collaboratively with fundamental knowledge and feed back into a new training model, shown to be superior to the empirical molybdenum equivalence method. The results draw a conclusion that the integration of data mining and machine learning will not only generate plausible explanations and address new hypotheses, but also enable the design of strong and ductile Ti alloys in a more efficient and cost-effective way. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
关键词High-throughput calculation Machine learning Electron work function Similar atomic environment Bonding charge density
资助者National Key Research and Development Program of China ; Science Challenge Project ; National Natural Science Foundation of China ; Fundamental Research Funds for the Central Universities in China
DOI10.1016/j.actamat.2020.10.056
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2016YFB0701304] ; National Key Research and Development Program of China[2016YFB0701303] ; Science Challenge Project[TZ2018002] ; National Natural Science Foundation of China[51690163] ; Fundamental Research Funds for the Central Universities in China[G2016KY0302]
WOS研究方向Materials Science ; Metallurgy & Metallurgical Engineering
WOS类目Materials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering
WOS记录号WOS:000599953700005
出版者PERGAMON-ELSEVIER SCIENCE LTD
引用统计
被引频次:71[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/158747
专题中国科学院金属研究所
通讯作者Li, Jinshan; Wang, William Yi; Song, Haifeng
作者单位1.Northwestern Polytech Univ, State Key Lab Solidificat Proc, Xian 710072, Shaanxi, Peoples R China
2.CAEP Software Ctr High Performance Numer Simulat, Beijing 100088, Peoples R China
3.Inst Appl Phys & Computat Math, Lab Computat Phys, Beijing, Peoples R China
4.Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China
5.Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Shanghai 200240, Peoples R China
6.RMIT Univ, Sch Engn, Ctr Addit Mfg, Melbourne, Vic 3000, Australia
7.Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
8.Chinese Acad Sci, Inst Met Res, 72 Wenhua Rd, Shenyang 110016, Peoples R China
推荐引用方式
GB/T 7714
Zou, Chengxiong,Li, Jinshan,Wang, William Yi,et al. Integrating data mining and machine learning to discover high-strength ductile titanium alloys[J]. ACTA MATERIALIA,2021,202:211-221.
APA Zou, Chengxiong.,Li, Jinshan.,Wang, William Yi.,Zhang, Ying.,Lin, Deye.,...&Xu, Dongsheng.(2021).Integrating data mining and machine learning to discover high-strength ductile titanium alloys.ACTA MATERIALIA,202,211-221.
MLA Zou, Chengxiong,et al."Integrating data mining and machine learning to discover high-strength ductile titanium alloys".ACTA MATERIALIA 202(2021):211-221.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zou, Chengxiong]的文章
[Li, Jinshan]的文章
[Wang, William Yi]的文章
百度学术
百度学术中相似的文章
[Zou, Chengxiong]的文章
[Li, Jinshan]的文章
[Wang, William Yi]的文章
必应学术
必应学术中相似的文章
[Zou, Chengxiong]的文章
[Li, Jinshan]的文章
[Wang, William Yi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。