Hierarchical toughening of bioinspired nacre-like hybrid carbon composite | |
Jiao, D.1; Zhang, J.1; Liu, Y. Y.1,2; Liu, X. G.1; Zhang, Q.1; Tang, S. F.1; Liu, Z. Q.1,2; Zhang, Z. F.1,2 | |
Corresponding Author | Liu, Z. Q.(zengqianliu@imr.ac.cn) ; Zhang, Z. F.(zhfzhang@imr.ac.cn) |
2021 | |
Source Publication | CARBON
![]() |
ISSN | 0008-6223 |
Volume | 171Pages:409-416 |
Abstract | Replicating the architecture of natural nacre has become an important approach for enhancing the damage tolerance of man-made materials. Nevertheless, this is principally limited to systems composed of chemically different constituents and demonstrates a difficulty in realizing structural hierarchy at multiple length-scales. Here a proof of concept is presented about the implementation of bioinspired nacre-like designs in a hybrid composite of pure carbon comprising its two basic allotropic forms, i.e., natural graphite flakes and amorphous carbon from the carbonization of organics. Multiscale micro/nano-architectures with three levels of hierarchy were constructed in the composite based on the preferential alignment of graphite flakes using bidirectional freeze casting method. The composite exhibited a remarkable mechanical efficiency, specifically featured by good damage tolerance with rising R-curve behavior, owing to the activation of hierarchical toughening mechanisms at micro to nano length-scales. This verifies the potency of nacre-inspired designs for generating enhanced fracture toughness in carbon systems, even using simple raw materials, which is significant for promoting their structural applications. (C) 2020 Elsevier Ltd. All rights reserved. |
Keyword | Hierarchical architecture Carbon composite Bioinspiration Toughening |
Funding Organization | National Natural Science Foundation of China ; LiaoNing Revitalization Talents Program ; Youth Innovation Promotion Association CAS |
DOI | 10.1016/j.carbon.2020.09.041 |
Indexed By | SCI |
Language | 英语 |
Funding Project | National Natural Science Foundation of China[51871216] ; National Natural Science Foundation of China[51331007] ; LiaoNing Revitalization Talents Program ; Youth Innovation Promotion Association CAS |
WOS Research Area | Chemistry ; Materials Science |
WOS Subject | Chemistry, Physical ; Materials Science, Multidisciplinary |
WOS ID | WOS:000598371500044 |
Publisher | PERGAMON-ELSEVIER SCIENCE LTD |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://ir.imr.ac.cn/handle/321006/158842 |
Collection | 中国科学院金属研究所 |
Corresponding Author | Liu, Z. Q.; Zhang, Z. F. |
Affiliation | 1.Chinese Acad Sci, Shi Changxu Innovat Ctr Adv Mat, Inst Met Res, Shenyang 110016, Peoples R China 2.Univ Sci & Technol China, Sch Mat Sci & Engn, Hefei 230026, Peoples R China |
Recommended Citation GB/T 7714 | Jiao, D.,Zhang, J.,Liu, Y. Y.,et al. Hierarchical toughening of bioinspired nacre-like hybrid carbon composite[J]. CARBON,2021,171:409-416. |
APA | Jiao, D..,Zhang, J..,Liu, Y. Y..,Liu, X. G..,Zhang, Q..,...&Zhang, Z. F..(2021).Hierarchical toughening of bioinspired nacre-like hybrid carbon composite.CARBON,171,409-416. |
MLA | Jiao, D.,et al."Hierarchical toughening of bioinspired nacre-like hybrid carbon composite".CARBON 171(2021):409-416. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment