IMR OpenIR
Anisotropic Magnon-Magnon Coupling in Synthetic Antiferromagnets
He, Wei1,2; Xie, Z. K.1,2; Sun, Rui1,2; Yang, Meng1,2; Li, Yang1,2; Zhao, Xiao-Tian3; Liu, Wei3; Zhang, Z. D.3; Cai, Jian-Wang1,2; Cheng, Zhao-Hua1,2; Lu, Jie4,5
Corresponding AuthorHe, Wei(hewei@iphy.ac.cn) ; Zhao, Xiao-Tian(xtzhao@imr.ac.cn) ; Lu, Jie(jlu@yzu.edu.cn)
2021-06-01
Source PublicationCHINESE PHYSICS LETTERS
ISSN0256-307X
Volume38Issue:5Pages:6
AbstractMagnon-magnon coupling in synthetic antiferromagnets advances it as hybrid magnonic systems to explore the quantum information technologies. To induce magnon-magnon coupling, the parity symmetry between two magnetization needs to be broken. Here we experimentally demonstrate a convenient method to break the parity symmetry by the asymmetric structure. We successfully introduce a magnon-magnon coupling in Ir-based synthetic antiferromagnets CoFeB(10 nm)/Ir(t (Ir) = 0.6 nm, 1.2 nm)/CoFeB(13 nm). Remarkably, we find that the weakly uniaxial anisotropy field (similar to 20 Oe) makes the magnon-magnon coupling anisotropic. The coupling strength presented by a characteristic anticrossing gap varies in the range between 0.54 GHz and 0.90 GHz for t (Ir) = 0.6 nm, and between 0.09 GHz and 1.4 GHz for t (Ir) = 1.2 nm. Our results demonstrate a feasible way to induce magnon-magnon coupling by an asymmetric structure and tune the coupling strength by varying the direction of in-plane magnetic field. The magnon-magnon coupling in this highly tunable material system could open exciting perspectives for exploring quantum-mechanical coupling phenomena.
Funding OrganizationNational Natural Science Foundation of China ; National Key Research and Development Program of China ; Key Research Program of Frontier Sciences, CAS ; Natural Science Foundation for Distinguished Young Scholars of Hebei Province of China (S&T Program of Hebei)
DOI10.1088/0256-307X/38/5/057502
Indexed BySCI
Language英语
Funding ProjectNational Natural Science Foundation of China[51871235] ; National Natural Science Foundation of China[51671212] ; National Natural Science Foundation of China[52031014] ; National Natural Science Foundation of China[51771198] ; National Natural Science Foundation of China[51801212] ; National Key Research and Development Program of China[2016YFA0300701] ; National Key Research and Development Program of China[2017YFB0702702] ; National Key Research and Development Program of China[2017YA0206302] ; Key Research Program of Frontier Sciences, CAS[QYZDJ-SSW-JSC023] ; Key Research Program of Frontier Sciences, CAS[KJZD-SW-M01] ; Key Research Program of Frontier Sciences, CAS[ZDYZ2012-2] ; Natural Science Foundation for Distinguished Young Scholars of Hebei Province of China (S&T Program of Hebei)[A2019205310]
WOS Research AreaPhysics
WOS SubjectPhysics, Multidisciplinary
WOS IDWOS:000657955500001
PublisherIOP PUBLISHING LTD
Citation statistics
Cited Times:1[WOS]   [WOS Record]     [Related Records in WOS]
Document Type期刊论文
Identifierhttp://ir.imr.ac.cn/handle/321006/160272
Collection中国科学院金属研究所
Corresponding AuthorHe, Wei; Zhao, Xiao-Tian; Lu, Jie
Affiliation1.Chinese Acad Sci, Inst Phys, State Key Lab Magnetism, Beijing 100190, Peoples R China
2.Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
3.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
4.Hebei Normal Univ, Coll Phys, Shijiazhuang 050024, Hebei, Peoples R China
5.Hebei Normal Univ, Hebei Adv Thin Films Lab, Shijiazhuang 050024, Hebei, Peoples R China
Recommended Citation
GB/T 7714
He, Wei,Xie, Z. K.,Sun, Rui,et al. Anisotropic Magnon-Magnon Coupling in Synthetic Antiferromagnets[J]. CHINESE PHYSICS LETTERS,2021,38(5):6.
APA He, Wei.,Xie, Z. K..,Sun, Rui.,Yang, Meng.,Li, Yang.,...&Lu, Jie.(2021).Anisotropic Magnon-Magnon Coupling in Synthetic Antiferromagnets.CHINESE PHYSICS LETTERS,38(5),6.
MLA He, Wei,et al."Anisotropic Magnon-Magnon Coupling in Synthetic Antiferromagnets".CHINESE PHYSICS LETTERS 38.5(2021):6.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[He, Wei]'s Articles
[Xie, Z. K.]'s Articles
[Sun, Rui]'s Articles
Baidu academic
Similar articles in Baidu academic
[He, Wei]'s Articles
[Xie, Z. K.]'s Articles
[Sun, Rui]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[He, Wei]'s Articles
[Xie, Z. K.]'s Articles
[Sun, Rui]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.