Anisotropic Magnon-Magnon Coupling in Synthetic Antiferromagnets | |
He, Wei1,2; Xie, Z. K.1,2; Sun, Rui1,2; Yang, Meng1,2; Li, Yang1,2; Zhao, Xiao-Tian3; Liu, Wei3; Zhang, Z. D.3; Cai, Jian-Wang1,2; Cheng, Zhao-Hua1,2; Lu, Jie4,5 | |
Corresponding Author | He, Wei(hewei@iphy.ac.cn) ; Zhao, Xiao-Tian(xtzhao@imr.ac.cn) ; Lu, Jie(jlu@yzu.edu.cn) |
2021-06-01 | |
Source Publication | CHINESE PHYSICS LETTERS
![]() |
ISSN | 0256-307X |
Volume | 38Issue:5Pages:6 |
Abstract | Magnon-magnon coupling in synthetic antiferromagnets advances it as hybrid magnonic systems to explore the quantum information technologies. To induce magnon-magnon coupling, the parity symmetry between two magnetization needs to be broken. Here we experimentally demonstrate a convenient method to break the parity symmetry by the asymmetric structure. We successfully introduce a magnon-magnon coupling in Ir-based synthetic antiferromagnets CoFeB(10 nm)/Ir(t (Ir) = 0.6 nm, 1.2 nm)/CoFeB(13 nm). Remarkably, we find that the weakly uniaxial anisotropy field (similar to 20 Oe) makes the magnon-magnon coupling anisotropic. The coupling strength presented by a characteristic anticrossing gap varies in the range between 0.54 GHz and 0.90 GHz for t (Ir) = 0.6 nm, and between 0.09 GHz and 1.4 GHz for t (Ir) = 1.2 nm. Our results demonstrate a feasible way to induce magnon-magnon coupling by an asymmetric structure and tune the coupling strength by varying the direction of in-plane magnetic field. The magnon-magnon coupling in this highly tunable material system could open exciting perspectives for exploring quantum-mechanical coupling phenomena. |
Funding Organization | National Natural Science Foundation of China ; National Key Research and Development Program of China ; Key Research Program of Frontier Sciences, CAS ; Natural Science Foundation for Distinguished Young Scholars of Hebei Province of China (S&T Program of Hebei) |
DOI | 10.1088/0256-307X/38/5/057502 |
Indexed By | SCI |
Language | 英语 |
Funding Project | National Natural Science Foundation of China[51871235] ; National Natural Science Foundation of China[51671212] ; National Natural Science Foundation of China[52031014] ; National Natural Science Foundation of China[51771198] ; National Natural Science Foundation of China[51801212] ; National Key Research and Development Program of China[2016YFA0300701] ; National Key Research and Development Program of China[2017YFB0702702] ; National Key Research and Development Program of China[2017YA0206302] ; Key Research Program of Frontier Sciences, CAS[QYZDJ-SSW-JSC023] ; Key Research Program of Frontier Sciences, CAS[KJZD-SW-M01] ; Key Research Program of Frontier Sciences, CAS[ZDYZ2012-2] ; Natural Science Foundation for Distinguished Young Scholars of Hebei Province of China (S&T Program of Hebei)[A2019205310] |
WOS Research Area | Physics |
WOS Subject | Physics, Multidisciplinary |
WOS ID | WOS:000657955500001 |
Publisher | IOP PUBLISHING LTD |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://ir.imr.ac.cn/handle/321006/160272 |
Collection | 中国科学院金属研究所 |
Corresponding Author | He, Wei; Zhao, Xiao-Tian; Lu, Jie |
Affiliation | 1.Chinese Acad Sci, Inst Phys, State Key Lab Magnetism, Beijing 100190, Peoples R China 2.Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China 3.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China 4.Hebei Normal Univ, Coll Phys, Shijiazhuang 050024, Hebei, Peoples R China 5.Hebei Normal Univ, Hebei Adv Thin Films Lab, Shijiazhuang 050024, Hebei, Peoples R China |
Recommended Citation GB/T 7714 | He, Wei,Xie, Z. K.,Sun, Rui,et al. Anisotropic Magnon-Magnon Coupling in Synthetic Antiferromagnets[J]. CHINESE PHYSICS LETTERS,2021,38(5):6. |
APA | He, Wei.,Xie, Z. K..,Sun, Rui.,Yang, Meng.,Li, Yang.,...&Lu, Jie.(2021).Anisotropic Magnon-Magnon Coupling in Synthetic Antiferromagnets.CHINESE PHYSICS LETTERS,38(5),6. |
MLA | He, Wei,et al."Anisotropic Magnon-Magnon Coupling in Synthetic Antiferromagnets".CHINESE PHYSICS LETTERS 38.5(2021):6. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment