Dehydration of n-butanol on phosphate-modified carbon nanotubes: active site and intrinsic catalytic activity | |
Li, Fan1,2; Dai, Xueya1,2; Lu, Xingyu1,2; Wang, Chao3; Qi, Wei1,2 | |
通讯作者 | Qi, Wei(wqi@imr.ac.cn) |
2021-05-12 | |
发表期刊 | CATALYSIS SCIENCE & TECHNOLOGY
![]() |
ISSN | 2044-4753 |
页码 | 9 |
摘要 | Dehydration of n-butanol (nB) to corresponding olefins (butene) is an important reaction route to realize efficient utilization of bulk bio-alcohols. In this work, novel phosphate modified oxidized multi-walled carbon nanotubes (P-oCNT) were prepared via a simple impregnation process, and the proposed solid acid catalyst exhibited superior catalytic activity and stability in nB dehydration reactions with 94% nB conversion and 99% butene selectivity under gentle reaction conditions (260 degrees C). In situ titration results revealed that the Bronsted and Lewis acid sites are all active sites, and the Lewis acid sites contribute to over 88% of the activity in nB dehydration reactions. The polyphosphate species (POx) were identified as the key Lewis acid active sites, which were covalently linked onto the oCNT surface via C-O-P bonds, and the carbon matrix played a vital role in enhancing and stabilizing the catalytic activity of the POx species. The basic kinetic analysis results indicated that the nB dehydration reaction on P-oCNT catalysts followed the E1 mechanism, while the reaction route would shift to E2 with the reaction temperature increasing. The relatively high catalytic efficiency and sustainable nature of the whole non-metallic system show the potential of the proposed reaction system in modern chemical industries. |
资助者 | NSFC of China ; Natural Science Foundation of Liaoning Province of China ; Program of the Department of Science & Technology of Liaoning Province |
DOI | 10.1039/d1cy00426c |
收录类别 | SCI |
语种 | 英语 |
资助项目 | NSFC of China[22072163] ; NSFC of China[21761132010] ; NSFC of China[91645114] ; Natural Science Foundation of Liaoning Province of China[2020-YQ-02] ; Program of the Department of Science & Technology of Liaoning Province[2019-MS-296] |
WOS研究方向 | Chemistry |
WOS类目 | Chemistry, Physical |
WOS记录号 | WOS:000653911600001 |
出版者 | ROYAL SOC CHEMISTRY |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.imr.ac.cn/handle/321006/161195 |
专题 | 中国科学院金属研究所 |
通讯作者 | Qi, Wei |
作者单位 | 1.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China 2.Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 110016, Peoples R China 3.Shenyang Pharmaceut Univ, Sch Med Devices, 103 Wenhua Rd, Shenyang 110016, Peoples R China |
推荐引用方式 GB/T 7714 | Li, Fan,Dai, Xueya,Lu, Xingyu,et al. Dehydration of n-butanol on phosphate-modified carbon nanotubes: active site and intrinsic catalytic activity[J]. CATALYSIS SCIENCE & TECHNOLOGY,2021:9. |
APA | Li, Fan,Dai, Xueya,Lu, Xingyu,Wang, Chao,&Qi, Wei.(2021).Dehydration of n-butanol on phosphate-modified carbon nanotubes: active site and intrinsic catalytic activity.CATALYSIS SCIENCE & TECHNOLOGY,9. |
MLA | Li, Fan,et al."Dehydration of n-butanol on phosphate-modified carbon nanotubes: active site and intrinsic catalytic activity".CATALYSIS SCIENCE & TECHNOLOGY (2021):9. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论