IMR OpenIR
Synergistic Effects for Enhanced Catalysis in a Dual Single-Atom Catalyst
Fu, Junhong1; Dong, Jinhu2; Si, Rui4; Sun, Keju3; Zhang, Junying1; Li, Mingrun2; Yu, Nana1; Zhang, Bingsen4; Humphrey, Mark G.5; Fu, Qiang1,2; Huang, Jiahui1
Corresponding AuthorDong, Jinhu(jiahuihuang@dicp.ac.cn) ; Si, Rui(sirui@mail.sysu.edu.cn) ; Fu, Qiang(qfu@dicp.ac.cn)
2021-02-19
Source PublicationACS CATALYSIS
ISSN2155-5435
Volume11Issue:4Pages:1952-1961
AbstractSynergistic effects have been discussed extensively in bimetallic heterogeneous catalysis, but it remains unclear how the effects function at the atomic scale. Here, we report a dual single-atom catalyst (DSAC) Ir1Mo1/TiO2 displaying much greater catalytic chemoselectivity (>96%, at 100% conversion) than comparable single-atom catalysts (SACs) Ir-1/TiO2 (38%, at 87% conversion) and Mo-1/TiO2 (no activity) for the hydrogenation of 4-nitrostyrene (4-NS) to 4-vinylaniline (4-VA). Activation of the TiO2-supported bimetallic carbonyl cluster Ir2Mo2(CO)(10)(eta(5)-C5H5) (2) in an Ar atmosphere affords the DSAC Ir1Mo1/TiO2. Characterization of the dual single-atom structure confirms that it consists of well-dispersed Ir single atoms (Ir-1) and Mo single atoms (Mo-1) on TiO2. Density functional theory studies reveal that Ir-1 sites effect H-2 activation while Mo-1 sites are responsible for 4-NS adsorption, with synergistic cooperation between the two sets of single atoms contributing to the better catalytic performance for the hydrogenation of 4-NS. This work provides a deep understanding of synergistic effects in dual single-atom catalysis.
Keywordbimetallic catalysis synergistic effects single-atom catalyst dual single-atom catalyst hydrogenation of nitrostyrene
Funding OrganizationNational Natural Science Foundation of China ; Chinese Academy of Sciences ; National Key R&D Program of China ; Projects of International Cooperation and Exchanges NSFC ; International Postdoctoral Exchange Fellowship Program
DOI10.1021/acscatal.0c05599
Indexed BySCI
Language英语
Funding ProjectNational Natural Science Foundation of China[21703235] ; National Natural Science Foundation of China[21688102] ; Chinese Academy of Sciences[XDB17000000] ; National Key R&D Program of China[2019YFC1905300] ; Projects of International Cooperation and Exchanges NSFC[21961142006] ; International Postdoctoral Exchange Fellowship Program
WOS Research AreaChemistry
WOS SubjectChemistry, Physical
WOS IDWOS:000621598700007
PublisherAMER CHEMICAL SOC
Citation statistics
Cited Times:10[WOS]   [WOS Record]     [Related Records in WOS]
Document Type期刊论文
Identifierhttp://ir.imr.ac.cn/handle/321006/161217
Collection中国科学院金属研究所
Corresponding AuthorDong, Jinhu; Si, Rui; Fu, Qiang
Affiliation1.Chinese Acad Sci, Dalian Inst Chem Phys, Dalian Natl Lab Clean Energy, Dalian 116023, Peoples R China
2.Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, iChEM, Dalian 116023, Peoples R China
3.Yanshan Univ, Key Lab Appl Chem, Coll Environm & Chem Engn, Qinhuangdao 066004, Hebei, Peoples R China
4.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
5.Australian Natl Univ, Res Sch Chem, Canberra, ACT 2601, Australia
Recommended Citation
GB/T 7714
Fu, Junhong,Dong, Jinhu,Si, Rui,et al. Synergistic Effects for Enhanced Catalysis in a Dual Single-Atom Catalyst[J]. ACS CATALYSIS,2021,11(4):1952-1961.
APA Fu, Junhong.,Dong, Jinhu.,Si, Rui.,Sun, Keju.,Zhang, Junying.,...&Huang, Jiahui.(2021).Synergistic Effects for Enhanced Catalysis in a Dual Single-Atom Catalyst.ACS CATALYSIS,11(4),1952-1961.
MLA Fu, Junhong,et al."Synergistic Effects for Enhanced Catalysis in a Dual Single-Atom Catalyst".ACS CATALYSIS 11.4(2021):1952-1961.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Fu, Junhong]'s Articles
[Dong, Jinhu]'s Articles
[Si, Rui]'s Articles
Baidu academic
Similar articles in Baidu academic
[Fu, Junhong]'s Articles
[Dong, Jinhu]'s Articles
[Si, Rui]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Fu, Junhong]'s Articles
[Dong, Jinhu]'s Articles
[Si, Rui]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.