Optimized Mechanical Properties, Corrosion Resistance and Bactericidal Ability of Ti-15Zr-xCu Biomedical Alloys During Aging Treatment | |
Kolawole, Sharafadeen Kunle1,2,3; Ren, Ling2; Siddiqui, Muhammad Ali1,2; Ullah, Ihsan1,2; Wang, Hai2; Zhang, Shuyuan2; Zhang, Ji2; Yang, Ke2 | |
通讯作者 | Ren, Ling(lren@imr.ac.cn) ; Yang, Ke(kyang@imr.ac.cn) |
2021-05-08 | |
发表期刊 | ACTA METALLURGICA SINICA-ENGLISH LETTERS
![]() |
ISSN | 1006-7191 |
页码 | 13 |
摘要 | The effects of different aging conditions on the microstructure, strength, corrosion resistance, cytotoxicity and antibacterial ability of Ti-15Zr-xCu (3 <= x <= 7, wt%) (TZC) alloys were systematically investigated. Microstructural evolution and behavior were analyzed by X-ray diffraction (XRD) patterns and scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS), while potentiodynamic polarization technique was employed to characterize the corrosion response of the alloys after solution-treatment and aging (STA). High-temperature aging at 660 degrees C for 4 h (660-4) gave the best combination of properties by enabling significant precipitation of the Cu-rich Ti2Cu and Zr2Cu compounds, and mild formation of the Zr7Cu10 secondary phase. The high kinetics at this condition was beneficial to the complete precipitation and more homogeneous distribution of the intermetallic particles. These led to the inhibition of dislocation movements and allowed for significantly improved mechanical strengths with added ductility, availability of more Cu ions for the desired oligodynamic activity without evoking cytotoxicity, better corrosion resistance and very high antibacterial ability (over 99.5%), thus improving the overall properties of the TZC alloys for biomedical applications. |
关键词 | Ti-15Zr-xCu alloys Solution treatment and aging Cu-rich precipitates Improved strength Corrosion resistance Antibacterial ability |
资助者 | National Natural Science Foundation of China ; CAS-TWAS President Fellowship |
DOI | 10.1007/s40195-021-01248-8 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[51631009] ; National Natural Science Foundation of China[31870954] ; CAS-TWAS President Fellowship |
WOS研究方向 | Metallurgy & Metallurgical Engineering |
WOS类目 | Metallurgy & Metallurgical Engineering |
WOS记录号 | WOS:000648369500001 |
出版者 | CHINESE ACAD SCIENCES, INST METAL RESEARCH |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.imr.ac.cn/handle/321006/162152 |
专题 | 中国科学院金属研究所 |
通讯作者 | Ren, Ling; Yang, Ke |
作者单位 | 1.Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 110016, Peoples R China 2.Chinese Acad Sci, Shi Changxu Innovat Ctr Adv Mat, Inst Met Res, Shenyang 110016, Peoples R China 3.Fed Polytech, PMB 420, Offa, Kwara State, Nigeria |
推荐引用方式 GB/T 7714 | Kolawole, Sharafadeen Kunle,Ren, Ling,Siddiqui, Muhammad Ali,et al. Optimized Mechanical Properties, Corrosion Resistance and Bactericidal Ability of Ti-15Zr-xCu Biomedical Alloys During Aging Treatment[J]. ACTA METALLURGICA SINICA-ENGLISH LETTERS,2021:13. |
APA | Kolawole, Sharafadeen Kunle.,Ren, Ling.,Siddiqui, Muhammad Ali.,Ullah, Ihsan.,Wang, Hai.,...&Yang, Ke.(2021).Optimized Mechanical Properties, Corrosion Resistance and Bactericidal Ability of Ti-15Zr-xCu Biomedical Alloys During Aging Treatment.ACTA METALLURGICA SINICA-ENGLISH LETTERS,13. |
MLA | Kolawole, Sharafadeen Kunle,et al."Optimized Mechanical Properties, Corrosion Resistance and Bactericidal Ability of Ti-15Zr-xCu Biomedical Alloys During Aging Treatment".ACTA METALLURGICA SINICA-ENGLISH LETTERS (2021):13. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论