Revisiting dynamics and models of microsegregation during polycrystalline solidification of binary alloy | |
Gong, Tongzhao1,2; Chen, Yun1; Li, Shanshan1,2; Cao, Yanfei1; Li, Dianzhong1; Chen, Xing-Qiu1; Reinhart, Guillaume3; Nguyen-Thi, Henri3 | |
Corresponding Author | Chen, Yun(chenyun@imr.ac.cn) |
2021-05-30 | |
Source Publication | JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
![]() |
ISSN | 1005-0302 |
Volume | 74Pages:155-167 |
Abstract | Microsegregation formed during solidification is of great importance to material properties. The conventional Lever rule and Scheil equation are widely used to predict solute segregation. However, these models always fail to predict the exact solute concentration at a high solid fraction because of theoretical assumptions. Here, the dynamics of microsegregation during polycrystalline solidification of refined Al-Cu alloy is studied via two- and three-dimensional quantitative phase-field simulations. Simulations with different grain refinement level, cooling rate, and solid diffusion coefficient demonstrate that solute segregation at the end of solidification (i.e. when the solid fraction is close to unit) is not strongly correlated to the grain morphology and back diffusion. These independences are in accordance with the Scheil equation which only relates to the solid fraction, but the model predicts a much higher liquid concentration than simulations. Accordingly, based on the quantitative phase-field simulations, a new analytical microsegregation model is derived. Unlike the Scheil equation or the Lever rule that respectively overestimates or underestimates the liquid concentration, the present model predicts the liquid concentration in a pretty good agreement with phase-field simulations, particularly at the late solidification stage. (C) 2021 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology. |
Keyword | Microsegregation Grain refinement Cooling rate Back diffusion Phase-field method |
Funding Organization | Science Challenge Project ; Youth Innovation Promotion Association CAS ; Youth Talent program of Shenyang National Laboratory for Materials Science ; Special Scientific Projects of Inner Mongolia ; French National Space Center (CNES) |
DOI | 10.1016/j.jmst.2020.09.038 |
Indexed By | SCI |
Language | 英语 |
Funding Project | Science Challenge Project[TZ2016004] ; Youth Innovation Promotion Association CAS ; Youth Talent program of Shenyang National Laboratory for Materials Science[L2019F08] ; Special Scientific Projects of Inner Mongolia ; French National Space Center (CNES)[174800/00] |
WOS Research Area | Materials Science ; Metallurgy & Metallurgical Engineering |
WOS Subject | Materials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering |
WOS ID | WOS:000636044000017 |
Publisher | JOURNAL MATER SCI TECHNOL |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://ir.imr.ac.cn/handle/321006/162340 |
Collection | 中国科学院金属研究所 |
Corresponding Author | Chen, Yun |
Affiliation | 1.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China 2.Univ Sci & Technol China, Sch Mat Sci & Engn, Hefei 230026, Peoples R China 3.Aix Marseille Univ, Univ Toulon, IM2NP, CNRS, Marseille, France |
Recommended Citation GB/T 7714 | Gong, Tongzhao,Chen, Yun,Li, Shanshan,et al. Revisiting dynamics and models of microsegregation during polycrystalline solidification of binary alloy[J]. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY,2021,74:155-167. |
APA | Gong, Tongzhao.,Chen, Yun.,Li, Shanshan.,Cao, Yanfei.,Li, Dianzhong.,...&Nguyen-Thi, Henri.(2021).Revisiting dynamics and models of microsegregation during polycrystalline solidification of binary alloy.JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY,74,155-167. |
MLA | Gong, Tongzhao,et al."Revisiting dynamics and models of microsegregation during polycrystalline solidification of binary alloy".JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 74(2021):155-167. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment