Removing basal-dissociated < c plus a > dislocations by {10(1)over-bar2} deformation twinning in magnesium alloys | |
Zhou, Xinzhe1,2; Su, Huhu1,3; Ye, Hengqiang2; Yang, Zhiqing1,2 | |
通讯作者 | Yang, Zhiqing(yangzq@imr.ac.cn) |
2021-09-15 | |
发表期刊 | ACTA MATERIALIA
![]() |
ISSN | 1359-6454 |
卷号 | 217页码:15 |
摘要 | Reactions of {10 (1) over bar2} twin boundaries (TBs) with dislocations in a Mg alloy subjected to cyclic deformation were studied and modeled, based on atomic-resolution observations, theory of interfacial defects and molecular dynamics (MD) simulations. Atomic-resolution observations provide evidence for occurrence of reactions of {10 (1) over bar2} TBs with basal < a(60)> and basal-dissociated < c + a > dislocations upon back and forth migration of {10 (1) over bar2} TBs, respectively, during cyclic deformation. MD simulations show that immobile basal-dissociated < c + a(s)>,< c + a(60)> and < c > dislocations in Mg can be incorporated into {10 (1) over bar2} TBs to produce steps which can move together with the TBs upon twinning/detwinning under low shear stresses. And such steps can usually emit < a(60)> dislocations under simultaneous application of shear and normal stresses. Importantly, the normal stresses required to transmute immobile basal-dissociated < c + a > dislocations to glissile < a(60)> dislocations are much lower than those required to transmute basal < a(60)> dislocations to < c + a > dislocations during {10 (1) over bar2} deformation twinning. Our results may have implications for comprehensive understanding of the roles of deformation twinning, < c + a > dislocations, and their interactions/reactions in plastic deformation of Mg alloys. (C) 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. |
关键词 | Mg alloy Dislocation Twinning Interfacial defects Ductility |
资助者 | National Natural Science Foundation of China ; Key Research Program of Frontier Sciences, CAS ; Ji Hua Laboratory |
DOI | 10.1016/j.actamat.2021.117170 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[51971225] ; National Natural Science Foundation of China[51771202] ; Key Research Program of Frontier Sciences, CAS[QYZDY-SSW-JSC027] ; Ji Hua Laboratory[X210141TL210] |
WOS研究方向 | Materials Science ; Metallurgy & Metallurgical Engineering |
WOS类目 | Materials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering |
WOS记录号 | WOS:000691327100020 |
出版者 | PERGAMON-ELSEVIER SCIENCE LTD |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.imr.ac.cn/handle/321006/166860 |
专题 | 中国科学院金属研究所 |
通讯作者 | Yang, Zhiqing |
作者单位 | 1.Univ Sci & Technol China, Chinese Acad Sci, Sch Mat Sci & Engn, Inst Met Res,Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China 2.Ji Hua Lab, Foshan 528200, Peoples R China 3.Hebei Univ Technol, Sch Mat Sci & Engn, Tianjin Key Lab Mat Laminating Fabricat & Interfa, Tianjin 300130, Peoples R China |
推荐引用方式 GB/T 7714 | Zhou, Xinzhe,Su, Huhu,Ye, Hengqiang,et al. Removing basal-dissociated < c plus a > dislocations by {10(1)over-bar2} deformation twinning in magnesium alloys[J]. ACTA MATERIALIA,2021,217:15. |
APA | Zhou, Xinzhe,Su, Huhu,Ye, Hengqiang,&Yang, Zhiqing.(2021).Removing basal-dissociated < c plus a > dislocations by {10(1)over-bar2} deformation twinning in magnesium alloys.ACTA MATERIALIA,217,15. |
MLA | Zhou, Xinzhe,et al."Removing basal-dissociated < c plus a > dislocations by {10(1)over-bar2} deformation twinning in magnesium alloys".ACTA MATERIALIA 217(2021):15. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论