IMR OpenIR
三元层状陶瓷Ti3SiC2、Ti3AlC2的连接
其他题名Joining of Layered Ternary Ceramics Ti3SiC2 and Ti3AlC2
尹孝辉
学位类型博士
导师李美栓
2007-01-26
学位授予单位中国科学院金属研究所
学位授予地点金属研究所
学位专业材料学
关键词Ti3sic2 Ti3alc2 扩散连接 瞬间液相连接 界面反应 接头强度
摘要陶瓷连接的重要作用之一是提供一种低成本制造形状复杂构件的方法,同时可以提高陶瓷结构的可靠性,从而扩大陶瓷的应用范围。三元层状Mn+1AXn相陶瓷结合了陶瓷和金属的优异性能,作为一种新型结构/功能一体化陶瓷材料,特别是高温结构材料,在航空、航天、核工业和电子信息等高技术领域具有潜在的应用前景。但是和其它陶瓷一样,合成大尺寸的Mn+1AXn相体材料或构件还存在困难,限制了其在实际中推广应用。因而,研究Mn+1AXn相的连接不仅具有重要的理论意义,而且具有实用价值。 本文选择了Mn+1AXn相中最为典型的Ti3SiC2和Ti3AlC2陶瓷为基体,系统的研究了Ti3SiC2/Ni、Ti3SiC2/Al/Ti3SiC2、Ti3AlC2/Si/Ti3AlC2以及Ti3SiC2/Ti3AlC2体系的连接过程,得出主要结果如下: (1) 利用扩散连接方法成功的连接Ti3SiC2陶瓷和金属Ni,并且获得高强度的连接结构。在连接过程中,界面生成Ni31Si12、Ni16Ti6Si7、Ti2Ni 和 TiCx多种反应产物, 形成了Ni / Ni31Si12+Ni16Ti6Si7+TiCx / Ti3SiC2+Ti2Ni+TiCx / Ti3SiC2的界面结构。界面反应层的生长遵循抛物线规律。连接过程中同时发生Si从Ti3SiC2中向Ni扩散和Ni 穿过反应层向Ti3SiC2扩散, 但是Ni的扩散是界面反应的控制步骤。反应扩散激活能为118±12 kJ/mol。 分析了连接工艺参数对Ti3SiC2/Ni接头性能的影响,确定了最佳的连接工艺参数,即连接温度T = 1000 oC,连接压力P = 20 MPa,连接时间t = 10 min。在最佳工艺条件下获得的接头的剪切强度可达到121±7 MPa,接近Ti3SiC2陶瓷的剪切强度。 (2)用纯铝箔作为中间层,采用瞬间液相连接方法连接Ti3SiC2陶瓷。连接过程完全是由Al向Ti3SiC2陶瓷中扩散控制的,界面生成了Ti3Si(Al)C2 固溶体。由于Ti3Si(Al)C2 固溶体本身具有良好的力学性能,以及其与Ti3SiC2基体微小的热膨胀系数差异,使Ti3SiC2/Al/Ti3SiC2接头具有较高的弯曲强度。即使在1000 oC时,接头三点弯曲强度为226±30 MPa,达到Ti3SiC2陶瓷三点弯曲强度的74%。 (3)用Si作为中间层扩散连接Ti3AlC2陶瓷。连接过程是由Si向Ti3AlC2中扩散控制的,界面生成了Ti3Al(Si)C2固溶体。在室温时,接头三点弯曲强度为285±11 MPa,达到Ti3AlC2陶瓷三点弯曲强度的80%,而且这种高强度可以保持到1000 oC。残余应力,特别是残余拉应力,是影响接头弯曲强度的主要因素。利用有限元方法,模拟了Ti3AlC2陶瓷扩散连接接头残余应力分布特征。表明残余拉应力分布在热膨胀系数较小的Ti3Al(Si)C2固溶体靠近界面附近的区域,其最大值出现在接头边缘的微小区域。 (4)利用Si和Al的互扩散和Ti3SiC2、Ti3AlC2良好的高温塑性,成功的连接Ti3SiC2和Ti3AlC2陶瓷。连接过程中同时发生Si从Ti3SiC2中向Ti3AlC2扩散和Al 从Ti3AlC2中向Ti3SiC2扩散。界面处生成了Ti3Si(Al)C2和Ti3Al(Si)C2固溶体,在靠近Ti3AlC2一侧过渡区内还含有微量Ti5Si3相。 确定了在 1100-1300 oC温度范围扩散连接后Si、Al在Ti3SiC2/Ti3AlC2界面的分布规律。利用Fick 第二定律,计算出Si、Al分别在Ti3SiC2和Ti3AlC2中的扩散系数以及扩散激活能。Si、Al扩散系数的确定不仅为扩散连接工艺参数的选择提供基本数据,而且可以用以定量解释Mn+1AXn相陶瓷的一些特性。
其他摘要Joining is a critical enabling technology, essential to widespread use of ceramics in many applications. Specifically, it allows manufacture of large, complex, multifunctional assemblies through the controlled integrations of smaller, simple, and more easily manufacture parts. Recently, the nanolaminate ternary ceramics Mn+1AXn have attracted extensive attention due to their combination of the excellent properties of metals and ceramics. Such unique properties make it possible to use them in structural components for high-temperature applications. However, up to now, its applications are limited because of the difficulty of the synthesis of bulk Mn+1AXn phase with big dimensions. Therefore, studies on joining of Mn+1AXn phase are significant for promoting their applications. In the present work, we studied the bonding processes of Ti3SiC2/Ni, Ti3SiC2/ Al/Ti3SiC2, Ti3AlC2/Si/Ti3AlC2, and Ti3SiC2/Ti3AlC2. The following conclusions were drawn: (1) Ti3SiC2 and Ni were successfully bonded to each other. During diffusion bonding, the interfacial reactions happened, and the total diffusion path of the joining is determined to be Ni/Ni31Si12+Ni16Ti6Si7+TiCx/Ti3SiC2+Ti2Ni+TiCx/Ti3SiC2. The growth of the reaction layer follows parabolic law, and the temperature dependence of the reaction constant, k, can be expressed as k = 1.68×10-4 exp(-118±12 kJ/RT) m/s1/2. The diffusion of nickel through the reaction zone toward Ti3SiC2 is the main controlling step in the bonding process. The joint obtained under the condition at 1000 oC for 10 min under 20 MPa has maximum shear strength of 121±7 MPa, which is close to the shear strength of Ti3SiC2. (2) Joining of Ti3SiC2 ceramic via Al interlayer through transient liquid phase bonding method is studied. It has been shown that this method is effective for the production of strong joints. The mechanism of bonding is attributed to aluminum diffusing into the Ti3SiC2. Ti3Si(Al)C2 solid solution formed at the interface during bonding process. The formation of Ti3Si(Al)C2 solid solution causes the joint to possess high strength, owing to the similar mechanical properties and TEC value of Ti3Si(Al)C2 solid solution to Ti3SiC2 substrate. At 1000 oC, the flexural strength of the joint was still as high as 226±30 MPa, about 74% of that of Ti3SiC2 substrate. (3) Strong joints of Ti3AlC2 ceramic can be achieved through diffusion bonding via Si interlayer. Ti3Al(Si)C2 solid solution formed at the interface during bonding process. The mechanism of bonding is attributed to the inward diffusion of Si. The room temperature flexural strength of the joint is 285±11 MPa, which is about 80% of that of the Ti3AlC2 substrate; and retain this strength up to 1000 oC. The distributions of residual stress in Ti3AlC2/Si/Ti3AlC2 joint were simulated by FEM calculation. The results show that the maximum tensile residual stress situated in the small area adjacent to interface of Ti3Al(Si)C2 solid solution, which would decrease the strength of the joint. (4) Ti3SiC2 and Ti3AlC2 were successfully bonded to each other under bonding conditions of 1100 – 1300 oC. The mechanism of bonding is attributed to silicon diffusing inward the Ti3AlC2 and to aluminum diffusing inward the Ti3SiC2 simultaneously. During bonding, Ti3Al(Si)C2 and Ti3Al(Si)C2 solid solution formed at the interface, and a little of Ti5Si3 was produced adjacent to Ti3AlC2. The diffusion coefficients of Si and Al in Ti3SiC2 and Ti3AlC2 were calculated at the temperature range of 1100-1300 oC, respectively. The activation energies of Si and Al were also obtained. These results could be used to explain the diffusion behavior of elements quantitatively during the oxidation and surface treatment processes of Mn+1AXn phase.
页数140
语种中文
文献类型学位论文
条目标识符http://ir.imr.ac.cn/handle/321006/16843
专题中国科学院金属研究所
推荐引用方式
GB/T 7714
尹孝辉. 三元层状陶瓷Ti3SiC2、Ti3AlC2的连接[D]. 金属研究所. 中国科学院金属研究所,2007.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[尹孝辉]的文章
百度学术
百度学术中相似的文章
[尹孝辉]的文章
必应学术
必应学术中相似的文章
[尹孝辉]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。