IMR OpenIR
Sn-3.8Ag-0.7Cu无铅焊料的低周疲劳行为
其他题名Low cycle fatigue behavior of the Sn-3.8Ag-0.7Cu lead-free solder
曾秋莲
学位类型博士
导师尚建库
2007-06-04
学位授予单位中国科学院金属研究所
学位授予地点金属研究所
学位专业材料物理与化学
关键词Sn-3.8ag-0.7cu 无铅焊料 微观组织 低周疲劳 循环软化 晶界开裂 电流加载
摘要本文首先对Sn-3.8Ag-0.7Cu共晶无铅焊料的低周疲劳性能进行了详细的研究,分别考察了应变幅、应变速率或频率、温度和微观组织对该焊料的低周疲劳行为的影响。然后研究了电流作用对Sn-Ag-Cu/Cu微小焊点结构的组织和力学性能的影响。 在0.2~1.2%的应变幅范围和8×10-3/s~10-4/s的应变速率范围内,等轴结构Sn-3.8Ag-0.7Cu无铅焊料均发生明显的循环软化现象。在疲劳实验的早期便观察到试样表面产生很多的沿晶微裂纹,而且随着循环周数的增加,裂纹密度增加。用与渗流理论相结合的微裂纹模型模拟了应力响应曲线,与实验结果符合良好,从而说明该焊料的循环软化现象是由晶界裂纹引起的。 随着温度的升高,该等轴结构Sn-3.8Ag-0.7Cu焊料的循环软化加速。高温下的循环软化除了由于沿晶开裂的原因导致外,化合物与基体的界面和再结晶都是加速软化的因素。温度大于90℃时再结晶现象特别明显。尽管等轴结构Sn-3.8Ag-0.7Cu焊料的疲劳寿命对应变速率或频率不敏感,提高温度却缩短了该焊料的疲劳寿命。 与等轴焊料不同,枝晶结构Sn-3.8Ag-0.7Cu焊料存在循环稳定阶段,而且应变幅越小,稳定阶段越长。经过循环稳定阶段后,由于临界疲劳裂纹的形成出现循环软化,随后便是裂纹的失稳扩展。 在相同的应变幅下,枝晶结构Sn-3.8Ag-0.7Cu焊料的疲劳寿命比等轴结构的Sn-3.8Ag-0.7Cu焊料的要长得多。然而,这两种组织的Sn-3.8Ag-0.7Cu焊料的抗疲劳能力都比Sn-Pb共晶焊料高得多。这种不同的抗疲劳能力来自于各种焊料不同的形变和损伤机制。枝晶结构Sn-3.8Ag-0.7Cu焊料的形变机制为以沿最大剪切力方向发生剪切为主,所以沿剪切带产生微裂纹成为该枝晶焊料的疲劳损伤机制;而等轴的Sn-3.8Ag-0.7Cu焊料和Sn-Pb共晶焊料均以晶界滑移和晶界开裂为主要的疲劳相变和损伤机理。由于沿晶疲劳损伤机理,而且Sn-Pb共晶焊料中的Sn晶粒和Pb相很小,最有利于晶界和相界裂纹的形成和扩展,所以导致了Sn-Pb共晶焊料最差的抗疲劳能力。 电流作用对Sn-Ag-Cu/Cu焊点产生极性效应,导致阳极化合物厚度比阴极的化合物厚得多。另外,电流作用促进了Cu原子在表面的偏析,从而导致表面形成大量的Cu6Sn5化合物,这些表面偏聚的Cu来源于焊料本身和焊点阴极界面的Cu6Sn5化合物中。 电流作用后焊点的拉伸强度显著降低。大电流密度下,通电时间越长,焊点的疲劳寿命越短,断口脆性程度越大。断裂均发生在阴极界面附近。电流作用后的样品阴极断口上的大量孔洞可以合理解释其拉伸强度的降低和疲劳寿命的缩短。
其他摘要Low cycle fatigue behavior of the Sn-3.8Ag-0.7Cu lead-free solder was investigated as a function of plastic strain amplitude, strain rate, temperature and microstructure. Following the mechanical fatigue studies, effects of current stressing on microstructure and mechanical properties were explored in the Sn-3.8Ag-0.7Cu/Cu solder joints. At the strain rates of 8×10-3/s~10-4/s, the Sn-3.8Ag-0.7Cu solder with an equiaxed structure exhibited distinct cycle-dependent softening over the total strain amplitude range of 0.2~1.2%, which started from the beginning of fatigue cycling. Numerous microcracks along grain boundaries were observed in the microstructure and number of the intergranular microcracks increased with continued cycling. By combining percolation theory with microcracking analysis, the cycle-dependent softening behavior was shown to result from accumulation of microcrack density with fatigue cycles. The cycle-dependent softening of the equiaxed Sn-3.8Ag-0.7Cu solder was accelerated at higher temperatures. In addition to the intergranular microcracks, microcracking along the phase interface and the recrystallization also contributed to cycle-dependent softening of the solder, especially at temperatures higher than 90℃. While the fatigue life of the solder was insensitive to strain rates or frequencies, increasing temperature resulted in shorter fatigue lives. Different from the equiaxed microstructure, the dendritic microstructure of the Sn-3.8Ag-0.7Cu solder exhibited a stable cyclic response, namely, reaching a stable maximum stress at a constant strain amplitude. The lower the strain amplitude was, the longer the stable stress stage. After the stable stage, cyclic softening occurred due to formation of the fatigue cracks, followed by the rapid propagation of the main fatigue crack. At the same strain amplitude, the fatigue life of the dendritic Sn-3.8Ag-0.7Cu solder was longer than that of the Sn-3.8Ag-0.7Cu solder with an equiaxed structure. However, the fatigue resistance of the Sn-3.8Ag-0.7Cu alloy in both microstructures was higher than that of the Sn-Pb eutectic solder. The differences in the fatigue resistance resulted from the different cyclic deformation and fatigue damage mechanisms in the various solders. The deformation and damage mechanisms of the dendritic Sn-3.8Ag-0.7Cu solder consisted of shear bands along the maximum shear stress direction and microcracking along such shear bands, while the grain boundary sliding and intergranular microcracking constituted the dominant deformation and damage mechanism for the equiaxed Sn-3.8Ag-0.7Cu solder and Sn-Pb eutectic solder. Because of the intergranular fatigue damage, microcracks tend to develop at the fine grains of Sn and Pb in the Sn-Pb eutectic solder along grain and phase boundaries, resulting in low fatigue resistance of the Sn-Pb eutectic solder. Under current stressing, the IMC at the anode interface between solder and Cu substrate was much thicker than that at the cathode interface in the Sn-Ag-Cu/Cu solder joint, creating a polarity effect. At the same time, segregation of Cu was found on the surface of the joint to form large Cu6Sn5 phase on the surface as copper migrated from the interior of the solder and from the dissolution of Cu6Sn5 IMC at the cathode interface of the solder joint to the surface. The tensile strength of the solder joint after current stressing decreased markedly. Under the high current density, fatigue life was shortened greatly and the fraction of brittle fracture was increased with increasing time of current stressing. Following current stressing, fracture occurred at the cathode interface of the solder joint as voids accumulated at the cathode interface, in agreement with the decrease of tensile strength and the fatigue life of the solder joint after current stressing.
页数137
语种中文
文献类型学位论文
条目标识符http://ir.imr.ac.cn/handle/321006/16854
专题中国科学院金属研究所
推荐引用方式
GB/T 7714
曾秋莲. Sn-3.8Ag-0.7Cu无铅焊料的低周疲劳行为[D]. 金属研究所. 中国科学院金属研究所,2007.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[曾秋莲]的文章
百度学术
百度学术中相似的文章
[曾秋莲]的文章
必应学术
必应学术中相似的文章
[曾秋莲]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。