IMR OpenIR
合金化对TiT2和Ni-Ni3Al合金性能影响的第一原理研究
其他题名First-principles study on the alloying effects in TiT2 and Ni-Ni3Al systems
吴玉喜
学位类型博士
导师王元明
2007-06-05
学位授予单位中国科学院金属研究所
学位授予地点金属研究所
学位专业材料物理与化学
关键词第一原理 键序分析 合金化效果 致韧作用 环境脆性
摘要纯Ti是迄今为止所发现的储氢(氘、氚)密度较高的单质金属材料,它的氢(氘、氚)化物具有较高的热力学稳定性。由于钛的价格相对比较便宜,钛膜也易制备,因此,目前广泛用作超低平衡压氢同位素贮存和氚靶材料。但贮氢(氘、氚)后的钛氢(氘、氚)化物易发生氢(氘、氚)致碎化,钛氢(氘、氚)化物的机械强度也较低,氚衰变产生的3He在基体内的累积所造成的损伤更限制了钛氢(氘、氚)化物的使用寿命。显然,纯Ti已不能完全满足氢同位素贮存对其性能的要求,合金化是改善钛氢(氘、氚)化物力学性能和使用寿命的有效手段之一。实验上寻找理想的储氢(氘、氚)用的钛合金过程既费时,实验周期和成本也很大,还有放射性损伤的危险,所以,本论文希望通过第一原理计算研究合金化对钛氚化物中He行为的影响,以从理论上发现能改善钛氚化物固氦性能的合金元素,为储氢(氘、氚)用钛合金的制备提供参考。 高温合金中的H致脆性问题已经研究了多年,也据此改进了处理工艺,不过,它的作用机理仍存在着争议。理论计算包括第一原理计算,可尝试不同成分、不同结构和不同晶格错配度下的H致脆性问题;尽管第一原理计算结果,不能完全解决实际高温合金中的问题,但可以揭示这些问题的本质。本论文的第二部分主要用第一原理方法研究在Ni-Ni3Al体系中掺杂B、Zr等元素后对抑制H致脆性的作用,以加深对其作用机理的理解。 为了研究TiT2体系中氦(He)的占位行为和过渡族金属合金化的固氦效果,我们建立了用于低He浓度和高He浓度的模型,第一原理计算结果显示: 1)低He浓度时,He倾向于占据衰变前氚(T)所在的四面体间隙位置,而不是空间更大的八面体间隙位置; 2)低He浓度时,合金化元素固氦作用强弱排列如下:Nb > Y > Zr > Pd > Ru > Tc > Rh > Cr > Mo > Ag > Ti > V > Mn > Sc > Fe > Co > Ni > Cu > Cd > Zn; 3)在高He浓度时,He与TiT2中有利的合金元素有成键吸引作用,但He原子之间成反键排斥作用,He由四面体间隙位置向八面体间隙位置迁移; 4)高He浓度时,合金化元素固氦作用强弱排列如下:Y > Nb > Mo > Zr > Cr > Tc > Ru > Rh > Cu > Sc > V > Ti > Mn > Co > Fe > Ni > Pd > Ag > Cd > Zn; 5)不同氦浓度下,合金元素的固氦机制是不同。低He浓度时,有利的合金元素具有比Ti更强的把He捕获在四面体间隙位置的能力,它们降低了He的移动性,进而抑制了大He泡的形成。高He浓度时,理想的合金元素与He原子之间存在尽可能小的排斥作用,从而能延缓He泡的破裂。 第二部分用第一原理方法研究了Ni-Ni3Al合金体系中晶格错配度对H和B的占位行为的影响、B和Zr对体系的致韧作用以及B和Zr对H致脆性的影响: 1)在小的错配度范围内,H和B都能偏析到Ni-Ni3Al合金体系的Ni相,Ni/Ni3Al相界和Ni3Al相,不过,在这些区域B比H具有优先占据权; 2)当错配度变大时,B会从Ni相偏析到Ni/Ni3Al相界,而H仍坚持偏析到Ni相,说明Ni/Ni3Al相界或晶界不是捕获H的陷阱; 3)基于Rice-Wang模型和最大理想剪切应力模型,我们提出了一种用键序计算Griffith界面劈裂功和最大理想剪切应力的方法,从而可以定量地解释H致脆性、B致韧性以及Zr致韧性; 4)Zr倾向于偏析到富Ni的区域。当Ni相、Ni3Al相以及Ni/Ni3Al相界共存时,Zr的偏析倾向从强到弱排列为:Ni区域 > Ni/Ni3Al相界 > Ni3Al区域。这个特点也使得Ni3Al相中的Zr倾向于置换Al原子而不是Ni原子; 5)Zr对Ni相、Ni/Ni3Al相界和Ni3Al相都有致韧作用,其作用强弱排序为:Ni3Al相 > Ni/Ni3Al相界 > Ni相; 6)对比B和Zr对H的形成能的影响,可以发现,不论B在哪个区域(Ni相区域、Ni/Ni3Al相界区域和Ni3Al相区域)中,B都有助于抑制Ni-Ni3Al体系中的H致脆性;而Zr的作用受它的置换环境的影响:在Ni相和Ni /Ni3Al相界上,Zr的置换可抑制H致脆性,但在Ni3Al相中这种置换反倒会促进H的偏析,从而不利于抑制H致脆性。
其他摘要As the pure metal containing the highest hydrogen density, titanium (Ti) is widely used to deposit hydrogen (H) and its isotopes (deuterium (D) and tritium (T)) for the high thermodynamic stability of its hydride, its relatively low price and the easy preparation of its film samples. As H and its isotopes are used widely in high technological areas, pure Ti can no longer satisfy the requirement to store H and its isotopes, and the demand for new type storage materials with better mechanical strength and longer application life are increasing. However, due to the difficulty of obtaining large quantity of T, the radioactivity of T and the long age time, both the cycle period and the cost of alloying effect experiments will be dramatically huge. H-induced embrittlement in superalloys and intermetallics has been studied for many years, and many alloying elements and technical treatments that can suppress H-induced embrittlement have been found, for example, adding boron (B) and zirconium (Zr) in Ni3Al alloys. However, due to the difference in the composition and treatment of experimental samples and the existence of kinds of defects, the understanding of the mechanism of H-induced embrittlement and the suppression mechanism of alloying elements still can not reach to agreement. The advantage of first-principles study is its ability to investigate the influence of some specific factor on the characteristic of materials by controlling the compositions and structures of materials via computational simulation, which makes it able to find appropriate alloying elements for stabilization of helium (He), to understand the mechanism of H-induced embrittlement and the suppression mechanism of alloying elements on the H-induced embrittlement. Therefore, in this paper, the first-principles discrete variational method within the framework of density functional theory (DFT) is used to study the occupation behaviors of impurities and the alloying effect in two systems. The first one is about the occupation behavior of He in titanium ditritide and the alloying effect of transition metals on He. Two models are established to study the conditions with low and high He concentration, respectively: 1)In the low He concentration condition, He atom prefers to stay at the original tetrahedral interstice rather than the octahedral interstice of larger space; 2)In the low He concentration condition, the alloying effect of the 3d and 4d transition metals rank in the descending order as: Nb > Y > Zr > Pd > Ru > Tc > Rh > Cr > Mo > Ag > Ti > V > Mn > Sc > Fe > Co > Ni > Cu > Cd > Zn; 3)In the high He concentration condition, the interaction between He atom and metal atom changes from bonding to antibonding, resulting in the moving of He atom from tetrahedral interstices to octahedral interstices; 4)In the high He concentration condition,the alloying effect of the 3d and 4d transition metals rank in the descending order as: Y > Nb > Mo > Zr > Cr > Tc > Ru > Rh > Cu > Sc > V > Ti > Mn > Co > Fe > Ni > Pd > Ag > Cd > Zn; 5)The He-stabilization mechanism of transition element differs with He concentration: in the low He concentration condition, the desired alloying element is to decrease the mobility of He atom by trapping the He atom around it deeply at tetrahedral interstices to prevent the formation of large He bubble; in the high He concentration condition, the ideal alloying elements should have as small repulsive interaction as possible with He atoms to postpone the outbreak of He bubbles. The second one is on the influence of lattice misfit on the occupation behaviors of H and B in Ni-Ni3Al systems and the effect of B and Zr on the ductility and H-induced embrittlment of Ni-Ni3Al systems: 1)Under small misfit, both H and B prefer to occupy the Ni-rich interstices, but B has priority over H to take such interstices with lower impurity formation energy; 2)When misfit increases, the preferring site of B will change from that in Ni phase region to that in Ni/Ni3Al interface region, while that of H sticks to that in Ni phase region, which exclude the opinion that grain boundary or interface is the trap of H; 3)Based on the Rice-Wang thermodynamic model and theoretical maximum shear stress model, a method using bond order is proposed here to evaluate the influence of impurity on the Griffith work of interfacial cleavage and the maximum shear stress. It is found that H and B have inverse influence on the Griffith work of interfacial cleavage and the maximum shear stress in the Ni/Ni3Al interface region, confirming that H induces embritlement while B contributes to ductility in Ni-Ni3Al alloys; 4)Zr is found to prefer to segregate to Ni-rich region, resulting in its segregation tendency in Ni-Ni3Al alloys ranks in the descending order as: Ni phase region > Ni/Ni3Al interface region > Ni3Al phase region, and making it prefers to substitute for Al atom rather than Ni atom in Ni3Al phase; 5)Bond order analysis indicates that Zr has ductility effect in all the regions in Ni-Ni3Al alloys, respectively, and the effect ranks in ascending order as: Ni phase region < Ni/Ni3Al interface region < Ni3Al phase region; 6)Comparing the influence of B and Zr on the formation energy of H, B is found to increase the formation energy of H no matter where it is, Zr in Ni phase or Ni/Ni3Al interface region has similar but limited effect on the formation energy of H, which is good to suppress H-induced embrittlement; however, Zr in Ni3Al phase decreases the formation energy of H, which is one of the reasons that why Zr can not suppress the environmental embrittlement in Ni3Al alloys as B does.
页数106
语种中文
文献类型学位论文
条目标识符http://ir.imr.ac.cn/handle/321006/16879
专题中国科学院金属研究所
推荐引用方式
GB/T 7714
吴玉喜. 合金化对TiT2和Ni-Ni3Al合金性能影响的第一原理研究[D]. 金属研究所. 中国科学院金属研究所,2007.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[吴玉喜]的文章
百度学术
百度学术中相似的文章
[吴玉喜]的文章
必应学术
必应学术中相似的文章
[吴玉喜]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。