IMR OpenIR
Ti基原位共晶复合材料的微观结构和高强韧机理研究
其他题名Microstructure and reinforcement mechanism of Ti-based in situ eutectic composites
孙兵兵
学位类型博士
导师隋曼龄
2007-06-08
学位授予单位中国科学院金属研究所
学位授予地点金属研究所
学位专业材料物理与化学
关键词强韧化 原位共晶复合材料 钛合金 显微结构 透射电镜
摘要本文以两个新型Ti基原位共晶复合材料—Ti60Cu14Ni12Sn4Nb10合金和Ti65Fe35合金为研究对象,紧紧围绕其高强度、高延展性的特性,主要运用透射电子显微术(TEM)等结构表征和分析测试手段,对这两个合金的铸态显微结构和形变结构进行了详细的观察研究,揭示了结构与性能的关系,并提出了一个高性能原位共晶复合结构的设计思路。 Ti60Cu14Ni12Sn4Nb10合金具有伪二元Ti(Nb,Sn)-Cu(Ni) 系亚共晶非平衡组织,即初生相beta-Ti固溶体以枝状晶的形式均分布于纳米结构共晶基体上。共晶组织由棒状beta-Ti相和gamma-CuTi两相构成,且含有大量的晶格缺陷。beta-Ti枝晶相和beta-Ti共晶相均为过饱和固溶。 Ti60Cu14Ni12Sn4Nb10合金的强化机制主要是细晶强化和缺陷强化。合金的高强度主要来自于纳米结构共晶基体,而塑性则归功于韧性beta-Ti枝晶相的增韧作用。共晶基体对beta-Ti枝晶相形变的约束,显著增强了合金的加工硬化能力。该合金的形变机制仍然是位错滑移机制,而不是剪切带机制。纳米结构共晶基体与韧性beta-Ti枝晶相的复合结构使该合金同时具有高强度和高延展性。 Ti65Fe35合金具有过共晶组织,即FeTi初生相加上由FeTi相和beta-Ti相构成的共晶。而共晶组织中,FeTi相以短棒的形式分布在连续的beta-Ti相中,并在beta-Ti相中形成大量的位错结构。FeTi相和beta-Ti相均形成过饱和固溶。 Ti65Fe35合金的形变结构观察显示,beta-Ti相和FeTi初生相间没有滑移的传递,而短棒状FeTi共晶相与beta-Ti一起发生了形变,滑移可以穿越共晶相界面传播,这是共晶组织具有良好塑性的一个重要原因。粗大FeTi初生相与短棒状FeTi共晶相的形变行为不同,这可能是取向关系及有序能差异导致的。该合金的强化机制主要是位错强化和复合强化。FeTi初生相通过约束共晶形变及抑制微裂纹形成,显著增强了合金的加工硬化能力,促进合金均匀形变,从而得到较高的延伸率。该合金的高强度和高延展性是通过强韧共晶基体与脆硬初生相的复合实现的。 Ti60Cu14Ni12Sn4Nb10合金与Ti65Fe35合金尽管在成分组元数目和结构尺寸上明显不同,但实际上却有着重要的相同之处,即:两者均具有原位共晶复合结构,均是快速凝固非平衡组织,合金中的各相均出现不同程度的过饱和固溶,产生大量的晶体缺陷。这种含有大量晶体缺陷的原位共晶复合结构才是决定材料强度的本质因素。而成分多组元和结构尺寸纳米化并不是实现材料高强度、高延展性所必需的。在Ti60Cu14Ni12Sn4Nb10合金与Ti65Fe35合金比较分析的基础上,提出了一个经验性的、采用铸造法制备高性能原位共晶复合结构方法,即(1)合金成分位于深共晶系,组成共晶的两相应是具有一定成分范围的固溶体相或金属间化合物相,可采用多组元合金的方式抑制“线比例化合物”的形成。(2)针对共晶组织基体中连续相的韧、脆特征,选择亚共晶或过共晶成分,获得与共晶基体互补的初生相,实现原位共晶复合。该原位共晶复合结构设计方法的意义在于,应用该方法可以方便快捷地在数量众多的共晶系中选择出具有潜在价值的合金体系,通过简单的铸造法就有可能获得高性能的合金材料,这将极大地促进实用高性能合金材料的开发与发展。
其他摘要In this work, the microstructure and reinforcement mechanism of two Ti-based in situ eutectic composites-Ti60Cu14Ni12Sn4Nb10 and Ti65Fe35 alloys, both having high strength and high ductility simultaneously, are studied by using TEM, SEM and other related microstructure characterization and test methods. It’s found that the Ti60Cu14Ni12Sn4Nb10 alloy has a non-equilibrium hypoeutectic structure of pseudo-binary Ti(Nb, Sn)-Cu(Ni) system, that is micrometer-sized dendriticbeta-Ti solid solution dispersed in a nano/ultrafine-structured eutectic matrix. The eutectic matrix is a rod-like beta-Ti solid solution embedded in a gamma-CuTi intermetallic compound, with lots of defects in the beta-Ti eutectic phase. Both the dendritic beta-Ti phase and eutectic beta-Ti phase are supersaturation. The high strength of the alloy mainly comes from the nano/ultrafine-structured eutectic matrix due to grain refinement and defects strengthening, while the globular plasticity is attributed to the strong work hardening resulted from the confined deformation of ductile beta-Ti dendrites imposed by high strength matrix. The deformation mechanism is not shear bands but dislocation sliding. The in situ composite structure of the micrometer-sized ductile dendrites plus nano/ultrafine eutectic matrix leads to the high strength and high ductility simultaneously. The Ti65Fe35 alloy has a non-equilibrium hypereutectic structure. Micrometer-sized FeTi dendrites disperse uniformly in FeTi/beta-Ti eutectic matrix. In eutectic, FeTi rods embed in supersaturated beta-Ti with high density of dislocations. During the deformation, the FeTi/beta-Ti eutectic matrix underwent extensive deformation while the FeTi dendrite deformed little. There is no slip transfer between FeTi dendrite and beta-Ti, slip transfer occurs between the FeTi rods and beta-Ti. The different deformation behavior between FeTi dendrite and FeTi eutectic rods is attributed to the difference of orientational relationship and ordering energy. The deformation and micro-cracks in eutectic matrix was confined by the FeTi dendrites, leading to pronounced work hardening, hence to high ductility. The high strength of the alloy mainly comes from eutectic matrix due to dislocation strengthening and composite strengthening. It is found that the multi-component recipe and grain refinement is just one of the methods, but not necessary, to achieve high strength and high ductility. The composite structure with a supersaturated matrix decorated with high density of defects is the key to obtain such property. A strategy to produce in situ eutectic composite structure with potential property through casting is suggested. That is: (1) Design the alloy composition to be at or near deep eutectics and the phases in eutectic should be solid solution phase or intermetallic with a range of compostion, while the “ line intermetallic ” should be avoided by adding more components. (2) Select the hypoeutectic or the hypereutectic compositions, based on the ductile or brittle nature of the eutectic matrix, to achieve an in situ eutectic composite with a proper primary phase. It’s very meaningful to select eutectic system with potential property easily from so many alloy systems. By using this strategy, a basic in situ eutectic composite can be provided for further development.
页数120
语种中文
文献类型学位论文
条目标识符http://ir.imr.ac.cn/handle/321006/16888
专题中国科学院金属研究所
推荐引用方式
GB/T 7714
孙兵兵. Ti基原位共晶复合材料的微观结构和高强韧机理研究[D]. 金属研究所. 中国科学院金属研究所,2007.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[孙兵兵]的文章
百度学术
百度学术中相似的文章
[孙兵兵]的文章
必应学术
必应学术中相似的文章
[孙兵兵]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。