IMR OpenIR
铸造Mg-Al-Zn系合金的组织性能及其糊状区特性研究
其他题名Studies on microstructure, tensile properties and mushy zone characteristics of Mg-Al-Zn casting magnesium alloys
马跃群
学位类型博士
导师韩恩厚
2007-02-05
学位授予单位中国科学院金属研究所
学位授予地点金属研究所
学位专业材料学
关键词镁合金 显微组织 拉伸力学性能 糊状区 枝晶干涉 枝晶压紧 糊状区剪切强度
摘要为了充分挖掘低成本Mg-Al-Zn系铸造镁合金的力学性能潜力,本文系统研究了合金元素锑(Sb)、菱镁矿石碳变质处理以及热处理对铝、锌含量之和为10±2wt%的Mg-Al-Zn合金系的显微组织及拉伸力学性能的影响规律。 研究发现了第二相类型随Zn/Al质量比的变化规律:随Zn/Al质量比的增加,第二相依次为γ相、Φ相、τ相和未知Mg-Al-Zn三元相等。通过研究热分析技术获得的冷却曲线,发现上述第二相的形成温度如下:随着固溶锌元素含量的提高,γ相形成温度区间从AZ60合金的434~428℃逐步降低到AZ66合金的371~365℃;Φ相形成温度区间约在360~350℃之间;τ相形成温度区间为351~343℃; 未知Mg-Al-Zn三元相的形成温度区间为344~330℃。实验证实了(0.1~0.5wt.%)含量的锑元素可以一定程度地细化AZ64合金的晶粒尺寸,并使得第二相中的片层状组织向块状组织转变。研究发现菱镁矿石碳变质处理大大细化了中等铝锌含量镁合金体系的晶粒尺寸,并使第二相弥散分布;发现菱镁矿石碳变质处理实现晶粒细化所需的铝含量低限约为4wt.%。系统研究了该合金系的热处理条件,参照合金凝固终止温度,获得了使第二相彻底固溶到基体中的最佳固溶(T4)处理条件。最佳T6热处理(最佳T4热处理+时效处理)可使固溶的铝锌元素重新以弥散细小的形态从基体中析出。 拉伸力学性能实验表明:铸态和最佳T6热处理条件下,随铝、锌元素增加,屈服强度增加,塑性降低;铸态条件下,铝、锌含量之和为10 wt.%的合金其抗拉强度最高;最佳T6热处理条件下,铝、锌含量之和为11wt.%的合金其抗拉强度最高。0.1~0.5wt.%的锑元素提高合金的强度和塑性;菱镁矿石碳变质处理则可同时大幅提高合金的屈服强度、抗拉强度和塑性。 提出了中等铝锌含量铸造镁合金强韧化的四个关键因素:铝/锌元素的匹配、菱镁矿石碳变质处理、微量元素改性、合适的热处理工艺。在此基础上获得了高强度高韧性的铸造镁合金,其中最佳T6热处理的AZ64-0.1Sb合金力学性能优异,其屈服强度达到160MPa,抗拉强度达到313 MPa,延伸率为6%;在采用相似方法制备的同类合金中,上述性能指标在国际上居领先地位。 为了改善中等铝锌含量Mg-Al-Zn系铸造镁合金的铸造性能,建立了表征合金凝固过程的计算机辅助热分析技术;根据Couette型流变仪原理,建立了镁合金糊状区强度测试的连续扭矩测试技术;研究了与合金显微组织形成过程有关的凝固顺序和凝固路径,研究了糊状区温度参数、固相分数和糊状区剪切强度的演变规律等;这些研究结果为理解和调控该合金体系的显微组织和力学性能提供了重要的物理冶金基础。 提出了镁合金糊状区初晶形核第一特征温度Tn1、初晶形核第二特征温度Tn2等概念,引入了枝晶干涉点温度Tch、枝晶压紧点温度Tpk的概念。对铝、锌含量的研究表明:随着铝、锌含量的增加,Tn1、Tn2和Tch均呈逐步降低趋势,(Tn1-Tn2)温差逐渐拉开,(Tn2 -Tch)温差则基本恒定;中等铝锌含量镁合金的枝晶干涉点固相分数fs-ch约为0.27~0.37;对菱镁矿石碳变质处理的研究表明,异质形核作用可导致Tn1有所提高;研究发现,导致晶粒细化的菱镁矿石碳变质处理以及微量锑元素均具有提高fs-ch并缩小(Tn1-Tn2)温差的特征。 根据对合金糊状区剪切强度的研究,揭示了合金糊状区剪切强度与其铸造性能之间存在的内在联系。研究表明:枝晶压紧点剪切强度值τpk、剪切强度τ随温度或固相分数的增长速度是三个重要的参量。研究发现:热裂敏感性偏高的合金其枝晶压紧点剪切强度值τpk较高,其糊状区剪切强度τ随温度或固相分数的增长缓慢,不利于合金糊状区剪切强度的快速建立。
其他摘要For exploiting tensile properties potency of low-cost Mg-Al-Zn casting magnesium alloys, the influences of antimony element, carbon inoculation by adding magnesite particles, and heat treatment on the microstructure and tensile properties of Mg-Al-Zn alloys with 10±2wt% aluminum and zinc contents were investigated. The study discovered evolution rules of secondary phase type with Zn/Al mass ratio. Secondary phase changed from γ phase to Φ phase, τ phase and unknown Mg-Al-Zn ternary phase with the Zn/Al mass ratio increasing. By studying cooling curves acquired by thermal analysis technique, forming temperatures of secondary phases mentioned above were disclosed. The forming temperature of γ phase descended from AZ60 alloy’s 434~428℃ down to AZ66 alloy’s 371~365℃ with the increasing of solid solution content of zinc element in γ phase. The forming temperature range of Φ phase is around 360~350℃. The forming temperature range of τ phase is around 351~343℃. The forming temperature range of the unknown Mg-Al-Zn ternary phase is around 344~330℃. It was validated that 0.1~0.5 wt.% antimony addition refined the primary grains to some extent and turned lamellar secondary phases into massive secondary phases. The investigation also revealed that carbon inoculation by adding magnesite particles greatly refined primary grains and dispersed secondary phases, and it was discovered that aluminum content in this method should be greater than 4 wt.%. The heat treatments of these alloys were studied systemically. Referring to ending temperature of solidification, the condition of optimum solid solution (T4), which can make secondary phases dissolved into matrix thoroughly, were obtained. Optimum T6 heat treatment (i.e. optimum T4 solid solution plus age hardening) made the solid solved aluminum and zinc elements precipitated from matrix more dispersively than that in casting condition. Experiments of tensile properties indicated that Y.T.S (Yield Tensile Strength) increased and ductility decreased with aluminum and/or zinc content increasing at casting condition and optimum T6 heat treatment condition. At casting condition, alloys with 10 wt.% aluminum and zinc content got the maximum U.T.S (Ultimate Tensile Strength). At optimum T6 heat treatment condition, alloys with 11 wt.% aluminum and zinc content got the maximum U.T.S. 0.1~0.5 wt.% antimony were propitious to enhancement of strength and ductility. Carbon inoculation enhanced Y.T.S, U.T.S and ductility greatly at the same time. Four keys to improving strength and ductility of the medium Al/Zn content casting magnesium alloys were put forward as follows: matching of aluminum and zinc contents; carbon inoculation; micro-element modification; proper heat treatment. High strength and high ductility magnesium alloys were developed based on such idea. The results showed that AZ64-0.1Sb alloy at optimum T6 heat treatment condition (300℃, 2h; 320℃, 2h; 340℃, 2h; 350℃, 4h; 360℃, 4h; 370℃, 2h; 180℃, 20h) got excellent tensile properties, including Y.T.S of 160MPa, U.T.S of 313 MPa, and elongation of 6%. AZ64-0.5Sb alloy at such optimum T6 condition also got excellent tensile properties, including Y.T.S of 150MPa, U.T.S of 308 MPa, and elongation of 6.7%. These tensile properties are keeping ahead in the world among same alloys prepared by similar method. In the interest of improving castbility of Mg-Al-Zn alloys with medium aluminum and zinc contents, according to principles of double thermocouple method, computer aided thermal analysis technique for characterizing alloys’ solidification was set up. According to principles of Couette type rheometer, continuous torque measurement technique for testing alloys’ mushy zone shearing strength was set up. The solidification pathway and sequence related to microstructure formation were investigated. Evolution rules of mushy zone temperature parameters, solid fraction, and mushy zone shearing strength were studied also. These results provided important physics metallurgical fundament for understanding and control relationship between microstructure and tensile properties. New concept of Tn1 (first characteristic temperature of primary grain nucleation) and Tn2 (second characteristic temperature of primary grain nucleation) were put forward, and concepts of Tch (temperature of dendritic coherency) and Tpk (temperature of dendritic packing) were introduced. The investigation of the influence of aluminum and zinc contents revealed that Tn1, Tn2, and Tch decreased gradually, and temperature difference of (Tn1-Tn2) increased slowly, and temperature difference of (Tn2-Tch) almost remains constant while zinc and aluminum contents increased. The fs-ch (solid fraction of dendritic coherency) of medium Al/Zn content magnesium alloys varied from 0.27 to 0.37. Investigation on carbon inoculation by adding magnesite particles showed that heterogeneous nucleus heightened the value of Tn1. Studies also revealed that carbon inoculation by using magnesite particles and antimony addition, which both can refine primary grains, both heightened the valve of fs-ch and reduce temperature difference of (Tn1-Tn2). According to the investigation on mushy zone shearing strength of these alloys, the relationships between mushy zone shearing strength and castability were disclosed. The results indicated thatτpk (shearing strength at dendritic packing point), the increasing speed of shearing strength with temperature or solid fraction are three main parameters. The study also showed that alloys having high hot-cracking susceptivity had high value ofτpk, and these alloys’ mushy zone shearing strength increased slowly with temperature or solid fraction commonly, which went against to rapid setting up of the mushy zone shearing strength.
页数132
语种中文
文献类型学位论文
条目标识符http://ir.imr.ac.cn/handle/321006/16895
专题中国科学院金属研究所
推荐引用方式
GB/T 7714
马跃群. 铸造Mg-Al-Zn系合金的组织性能及其糊状区特性研究[D]. 金属研究所. 中国科学院金属研究所,2007.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[马跃群]的文章
百度学术
百度学术中相似的文章
[马跃群]的文章
必应学术
必应学术中相似的文章
[马跃群]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。