IMR OpenIR
脉冲放电烧结制备WC-Co硬质合金材料及其致密化机制的研究
其他题名Fabrication of WC-Co cemented carbides by electric-discharge compaction (EDC) and its densification mechanism
吴稀勇
学位类型博士
导师成会明
2007-01-25
学位授予单位中国科学院金属研究所
学位授予地点金属研究所
学位专业材料物理与化学
关键词脉冲放电烧结 Wc-co W-ni-fe 梯度材料 颗粒重排
摘要由于可以缩短烧结时间与促进烧结动力学,近年来电场辅助烧结方法如火花等离子体烧结和脉冲放电烧结等得到了广泛的应用,但是对于其内在的机制尚不是很清楚。本文通过脉冲放电烧结方法制备了超细WC-Co硬质合金,并对其结构和性能进行了分析;制备了WC-Co梯度材料,研究了脉冲放电烧结对WC-Co梯度材料中Co相迁移的影响;研究了W-Ni-Fe粉体的脉冲放电烧结及后续退火处理对其微观组织的影响;在上述工作的基础上,结合液相烧结理论及粉末压制模型,初步探索了脉冲放电过程中的致密化机制。主要研究结果如下: 1. 通过脉冲放电烧结方法,采用纳米WC-Co粉体制备出超细WC-Co硬质合金,所得到的材料中WC平均晶粒尺寸为120 nm,材料硬度达到22 GPa,断裂韧性达到9.79 MPa.m1/2。脉冲放电烧结中极短的保温时间,从动力学上抑制了WC晶粒的长大。由于快速致密化过程中的体积应变和快速升温中的热压应力,在WC晶粒内还形成了大量的孪晶,乃至晶格畸变。 2. 通过脉冲放电烧结方法,采用SCP纳米粉体和粗晶WC-Co粉体制备出由超细WC-Co硬质合金和粗晶WC-Co硬质合金所组成的梯度硬质合金材料。脉冲放电方法的极短烧结时间从动力学上抑制了液相烧结中由于晶粒尺寸不同所引起的 Co相迁移,从而保证了梯度结构的形成。 3. W-Ni-Fe粉体通过脉冲放电烧结和后续退火处理,可以得到具有不同微观组织结构的W-Ni-Fe合金。仅经脉冲放电烧结的合金中,形成了非均匀分布的Ni-Fe基体相,而且钨在Ni-Fe相中是过饱和固溶的。再经过1400°C退火,我们发现了有助于提高钨合金局域剪切性能的Ni-Fe相溶池结构。而在1450°C退火的试样中,由于液相的形成和均匀化,我们没有观察到Ni-Fe相溶池结构。退火过程中钨从基体相中的析出,是形成Ni-Fe相溶池结构的原因。钨的析出对固相晶粒长大也有一定的促进作用。 4. 通过钨合金、WC-Co硬质合金等粉体的脉冲放电烧结实验研究,并结合液相烧结理论,发现在脉冲放电烧结中液相对致密化过程有着决定性的作用。致密化的主要机制是液相所引起的,相对密度随着液相量的增加而增加。在脉冲放电烧结中,由于足够短的保温时间导致溶解-析出过程从动力学上受到抑制。。因而可以认为在脉冲放电烧结中主要的致密化机制是由液相引起的颗粒重排过程,而且脉冲放电烧结中液相的渗透深度与液相烧结模型中颗粒重排所引起的渗透深度也相吻合。
其他摘要Nowadays, field assisted sintering technology (FAST), such as spark plasma sintering (SPS) and electric-discharge compaction (EDC) is widely used due to shortening sintering time and enhancing sintering kinetics. However, the underlying mechanism of FAST is not well understood hitherto. In this work, nanocrystalline WC-Co powders were consolidated by EDC to produce ultrafine WC-Co cemented carbides, and the microstructure and mechanical properties of the as-sintered samples were also investigated. The migration of cobalt in sintering was evaluated in EDC of nanocrystalline WC-Co powders and coarse counterpart combination. EDC of W-Ni-Fe powders and subsequent annealing was also conducted. On the basis of compaction of W-Ni-Fe powders and WC-Co powders by EDC, powder compaction modeling and theory of liquid phase sintering, the densification mechanism in EDC was explored. The main results are summarized as follows: (1) Ultrafine WC-10Co cemented carbides were fabricated by EDC of WC-Co powder synthesized by spray conversion process (SCP). A grain size as small as 120 nm could be achieved with hardness of 22 GPa and fracture toughness of 9.79 MPa.m1/2. The grain growth was constrained due to the short holding time in EDC. A high density of defect, such as stacking faults, was found in WC grains and the lattice distortion also occurred. It is suggested that the high strain rate and instantaneous stress induced the defect formation during densification. (2) With EDC of nanocrystalline WC-Co powders and coarse-grained counterpart, graded WC-Co cemented carbides with ultrafine WC-Co cemented carbides and coarse counterpart combination which offered high hardness and excellent fracture toughness were achieved. Cobalt migration which always occurred in graded WC-Co cemented carbides during liquid phase sintering process induced by difference in WC grain size was constrained due to short holding time. (3) EDC and subsequent annealing of W-Ni-Fe alloys was conducted. Inhomogeneous distribution of matrix phase and super saturated solid solution were formed in EDC processing. When annealed at 1400C, the matrix pool which may enhance the initiation of adiabatic shear deformation was observed. When annealing temperature up to 1450C, with the formation of liquid phase, no matrix pool was found due to redistribution of the matrix phase. The tungsten precipitated from the matrix phase during annealing, which leaded to formation of matrix pool and also in part contributed to grain growth at solid state. (4) Consolidation of cemented carbide and tungsten heavy alloys was conducted under varying current densities to explore the effect of liquid phase on densification in EDC. The densification in EDC occurred only when liquid phase formed, and relative density increased with the increase of liquid phase volume. In the case of WC-11Co powders, the faceted grain evolution occurred but the grain growth was hardly observed. Furthermore, the depth of liquid penetration of Fe in WC-Co compact agreed well with that caused by particle rearrangement processing. These results suggest that the densification in EDC is mainly induced by particle rearrangement with liquid phase.
页数102
语种中文
文献类型学位论文
条目标识符http://ir.imr.ac.cn/handle/321006/16916
专题中国科学院金属研究所
推荐引用方式
GB/T 7714
吴稀勇. 脉冲放电烧结制备WC-Co硬质合金材料及其致密化机制的研究[D]. 金属研究所. 中国科学院金属研究所,2007.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[吴稀勇]的文章
百度学术
百度学术中相似的文章
[吴稀勇]的文章
必应学术
必应学术中相似的文章
[吴稀勇]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。