IMR OpenIR
单壁碳纳米管的超短结构和三维排列结构的理论研究
其他题名Ultrashort structures and three-dimensional packing structures of single-walled carbon nanotubes
孙成华
学位类型博士
导师成会明
2007-01-19
学位授予单位中国科学院金属研究所
学位授予地点金属研究所
学位专业材料学
关键词单壁碳纳米管 超短结构 三维排列结构 自相似排列模型
摘要十五年来,研究者在单壁碳纳米管的制备、表征、性能和应用研究领域已经取得了令人瞩目的成就,但基于无限长结构获得的认识是否适用于其超短结构和三维排列结构尚不清楚,而这一问题直接关系到单壁碳纳米管在纳米尺度和宏观尺度的应用。本论文在理想单壁碳纳米管已有的研究基础上,采用第一原理、密度泛函、半经验量子化学和连续介质力学等多尺度的计算方法对超短单壁碳纳米管和单壁碳纳米管的三维排列结构进行了系统的探讨。 首先研究了超短单壁碳纳米管的几何结构、标准形成焓、分子应变能及其分布、原子杂化状态和化学特性。研究发现,无论端部封闭还是开口,(1) 轴向仅一个重复单元的超短单壁碳纳米管可以稳定存在;(2) 随管长增加,锯齿型单壁碳纳米管的能隙单调减小,而扶手椅型单壁碳纳米管的能隙存在明显的规则振荡现象,但振幅逐渐减小而趋近于零;(3) 对于单壁碳纳米管超短结构而言,随着管长增加,锯齿型结构的稳定性单调提高,而扶手椅型结构则规则振荡变化,但总体趋势都是逐渐趋于稳定;(4) 扶手椅型单壁碳纳米管超短结构的分子应变能和原子杂化状态对端部和管长变化敏感,而锯齿型结构主要依赖管径变化;(5) 管体部分所有斜键都存在明显π轨道偏心现象。富勒烯端帽的主要影响表现在两方面:(i) 端部封闭的单壁碳纳米管,非平面应变能主要分布在富勒烯端帽,而分布在管体的非平面应变能很小,并随管径增加而迅速减小;(ii) 端帽与管体的匹配程度会影响管体碳原子的杂化以及应变能分布。 其次研究了无限长单壁碳纳米管之间的作用,并将计算结果用于研究单壁碳纳米管的三维排列结构,然后提出了自相似排列模型,并将这一模型应用于单壁碳纳米管绳的分形特性、孔结构和力学性能的研究。通过上述研究发现:(1) 单壁碳纳米管的管间范德华作用主要是色散力,作用势函数经约化后都落在同一曲线上,随管间距增加而迅速减小,因此管间作用主要由最近邻的单壁碳纳米管决定,次近邻及其他管的作用可以忽略;(2) 因管间作用,单壁碳纳米管易于形成三维排列结构,排列体现出层次性,以往的紧密堆积模型不能描述层次性,因此提出了自相似排列模型;(3) 自相似排列模型具有一般性,并通过引入不同尺度的排列单元可以描述单壁碳纳米管复杂的排列方式;(4) 根据自相似排列模型,我们发现,(i) 单壁碳纳米管束绳中存在分形,且主要来源于其层次排列,分形维数与排列致密度密切相关,并从实验上(氮气吸附法和X射线小角散射)均证实单壁碳纳米管束绳确实存在分形;(ii) 单壁碳纳米管的自相似排列会引入丰富、规则的孔隙,其中束间孔和绳间孔分别集中在2-8 nm和20-120 nm, 从而解释了单壁碳纳米管束绳中多种孔隙的来源,而且根据束间孔和绳间孔的孔径和相对孔容估计得到的管径和管束大小与高分辨观察一致;(iii) 单壁碳纳米管绳的轴向杨氏模量随排列层次的增加而迅速减小,这正是微米尺度的单壁碳纳米管绳轴向杨氏模量远小于单根管的原因。单壁碳纳米管的自相似模型还表明:分形特性直接导致单壁碳纳米管在用不同吸附质测量时,分子截面积小的吸附质测得的表观比表面积大,这一理论推测与Fujiwara和Wei等人的实验结果一致;超大管束不仅合成困难,而且从应用角度来看,单一管束的大小对于单壁碳纳米管孔结构并不重要,而控制管的二次排列是控制小尺度中孔的关键;单壁碳纳米管宏观束绳的真正优势在于比模量高,并且比模量不受排列方式的影响。 通过上述研究,完善了单壁碳纳米管的维度认识,即维度与体系电子结构、稳定性和化学特性的关系,同时单壁碳纳米管自相似排列模型的提出有效解决了单壁碳纳米管层次排列的描述问题,从而使得人们对单壁碳纳米管的理解和认识从准一维体系(无限长情形)拓展到零维和三维体系,这对于单壁碳纳米管在不同尺度的应用具有重要的科学意义和实用价值。 关键词:单壁碳纳米管,超短结构,三维排列结构,自相似排列模型
其他摘要ABSTRACT During the last fifteen years, great achievements have been obtained in the synthesis, characterizations, properties and applications of single-walled carbon nanotubes (SWNTs). However, whether the knowledge obtained from the quasi-one-dimensional system (infinitely long SWNTs) is applicable to ultrashort SWNT structures and three-dimensional SWNT arrays is unknown yet. In this dissertation, the structures and properties of ultrashort SWNTs and three-dimensional SWNT arrays are investigated comprehensively and systematically using multi-scale calculation methods including first principle, density functional theory (DFT), semi-empirical quantum method and the continuum model on the basis of the known knowledge of SWNTs. Firstly, the geometries, standard heats of formation, molecular strain energies, hybridizations and chemical reactivities are studied, and it is found for both closed and open SWNTs that (1) supershort SWNTs with only one repeating unit are stable; (2) with the increment of tube length, the energy gaps (ε) of zigzag SWNTs decrease monotonically, while a regular fluctuation of ε has been found for armchair SWNTs, with the oscillation decreasing to zero asymptotically; (3) in ultrashort cases, the stability of zigzag SWNTs increases steadily with the increment of tube length, while for armchair SWNTs, it oscillates regularly and becomes stable; (4) the strain energy and hybridization of ultrashort armchair SWNTs are sensitive to the tube length, while in the case of zigzag SWNTs, they only depend on the tube diameter; (5) dramatic misalignment angles of π orbital are found. For SWNTs with close ends, (i) nonplanar strain energy is distributed mainly on fullerene caps; (ii) the matching degree between the fullerene cap and the tube body plays an important role in the hybridization of carbon atoms and the distribution of strain energies. Secondly, the interaction between infinitely long SWNTs is studied and the calculated results are applied to three-dimensional SWNT arrays, and a self-similar array model is proposed and applied to the understanding of fractality, packing-dependent pores and mechanical properties of SWNTs. It is found that (1) van der Waals (vdW) interaction between SWNTs is mainly contributed by dispersion force, and vdW potential between any SWN-SWNT pair falls on the same curve when the energy and the distance are expressed in units of the well depth and equilibrium vdW gap, respectively; moreover, the vdW potential is mainly contributed by nearest SWNTs and effects from other ones can be neglected; (2) due to the vdW potential, SWNTs are apt to form three-dimensional arrays with a hierarchy structure, which can not be described by the closely-packing model, so a self-similar array model is proposed; (3) the self-similar array model is universal and can describe complex packing configurations of SWNTs using different packing units; (4) on the basis of the self-similar array model, (i) SWNT arrays present fractality, which is mainly from the hierarchy structure, and the fractal dimension is associated with the packing density, and these results are confirmed by nitrogen adsorption and small-angle X-ray scattering experiments. Due to the fractal effect, the surface area of SWNTs measured by the adsorbates with small cross-sectional areas is bigger than that by big adsorbate, which is consistent with the experimental results reported by Fujiwara et al. and Wei et al.; (ii) abundant and regular mesopores are introduced due to the self-similar array of SWNTs, among which inter-bundle pores and inter-array pores are distributed in the ranges of 2-8 nm and 20-120 nm, respectively, which explains the structural source of mesopores found in SWNT ropes and fibers; moreover, based on the diameters and relative volumes of inter-bundle pores and inter-array pores, tube diameter and bundle size are estimated, consistent with the results from high-resolution transmission electron microscopy. Accordingly, the key to control mesopores of SWNTs is to control the secondary packing of SWNTs; (iii) axial Young’s modulus of SWNT ropes decrease dramatically with the increment of their hierarchy levels, which is the reason why the strength of SWNT ropes is much lower than isolated SWNTs. In the micrometer scale, axial Young’s modulus of SWNTs is close to that of commercial carbon fibers, but their specific modulus is much higher, which is independent of the packing configurations. Through the above research, knowledge of the relationship between the dimension of SWNTs and their properties, such as electronic structures, stability and chemical reactivity, is obtained, and through the self-similar array model, the hierarchy structure of SWNT arrays can be well described. These understandings are of great scientific and technical significance for the application of SWNTs in different scales. Keywords: single-walled carbon nanotubes, ultrashort structure, three-dimensional arrays, self-similar array model, calculation and modelling
页数157
语种中文
文献类型学位论文
条目标识符http://ir.imr.ac.cn/handle/321006/16917
专题中国科学院金属研究所
推荐引用方式
GB/T 7714
孙成华. 单壁碳纳米管的超短结构和三维排列结构的理论研究[D]. 金属研究所. 中国科学院金属研究所,2007.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[孙成华]的文章
百度学术
百度学术中相似的文章
[孙成华]的文章
必应学术
必应学术中相似的文章
[孙成华]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。