IMR OpenIR
爆炸喷涂热障涂层的抗热冲击行为及其失效机理的研究
其他题名Study on Thermal Shock Cycling Behaviors and Failure Mechanisms of Thermal Barrier Coatings
柯培玲
学位类型博士
导师周延春
2006-09-25
学位授予单位中国科学院金属研究所
学位授予地点金属研究所
学位专业材料学
关键词热障涂层 爆炸喷涂 电弧离子镀 热冲击 失效机理
摘要针对先进发动机进口温度不断提高的要求,热障涂层(TBCs)的研究开发已是必然趋势。目前,研究的重点是如何进一步延长TBCs的使用寿命,提高其耐热温度,降低制造成本。提高热障涂层粘结层的高温抗氧化性能、降低陶瓷层的热导率和提高陶瓷层的抗剥落能力成为关键。本论文采用爆炸喷涂(D-gun)工艺制备以MCrAlY为粘结层,空心氧化锆陶瓷层(HSP-YSZ)为陶瓷面层的热障涂层体系,系统研究了MCrAlY粘结层的抗氧化性能,HSP-YSZ陶瓷层的组织结构和热导率,探讨了D-gun热障涂层体系的抗热冲击性能及其失效机理。在此基础上设计和制备了一种提高热冲击寿命的热障涂层体系,即电弧离子镀/爆炸喷涂(AIP/D-gun)复合工艺制备的HSP-YSZ热障涂层。 研究结果表明:爆炸喷涂 NiCrAlY涂层在1100˚C恒温氧化动力学曲线符合抛物线规律,表面生成α-Al2O3和Cr2O3保护膜;真空热处理中,涂层晶粒长大,阻碍了涂层中Al元素的选择性氧化,合金基体中的Ti向涂层表面扩散,TiO2的形成破坏了Al2O3、Cr2O3表面氧化膜的保护性,氧化膜发生开裂和剥落,大量次生NiO的出现,加速了氧化进程,降低了涂层的抗氧化能力。 空心粉末颗粒分布在较窄的粒径范围内有利于制备得到结合强度高、气孔裂纹均匀分布的热障涂层,制备的HSP-YSZ陶瓷层具有更优的抗热冲击寿命。HSP-YSZ陶瓷层微裂纹分布均匀,具有较高的气孔率(10%)。与喷涂前的空心粉末比较,HSP-YSZ陶瓷层的相结构更利于涂层的结构稳定。HSP-YSZ陶瓷层具有低的热导率,为0.8-1.2 W/m-K,可获得较好的隔热效果。 对D-gun热障涂层进行了1100˚C室温水淬冷却的热冲击循环实验,结果表明:D-gun热障涂层的失效与粘结层氧化在界面形成富Ni、Cr氧化物密切有关。在热冲击循环过程中,陶瓷层和粘结层界面处形成了起伏的热生长氧化物(TGO),以及随后界面处孔洞的形成,削弱了YSZ/TGO界面的结合强度,导致YSZ/TGO界面的最初破坏;进一步热冲击循环中,粘结层Al贫化,Ni、Cr开始发生氧化,富Ni、Cr的氧化物更多在YSZ/TGO界面的凸起处形成,由于TGO层与粘结层、陶瓷层的热膨胀失配,界面凸起处的TGO层经受拉应力,冷却过程中容易引起孔洞和裂纹在此处萌生并扩展,导致涂层发生化学失效;同时,空心陶瓷层内横向裂纹和纵向裂纹的串连合并引起层状结构的部分陶瓷层剥落失效。 相比于爆炸喷涂NiCrAlY粘结层的高温氧化性能,AIP制备的NiCoCrAlY型粘结层对合金起到更好的抗氧化保护作用。1100˚C下Ni-32Co-20Cr-10Al-0.5Y- 1Si-0.03B涂层具有最优的保护性,涂层中Al含量从8%增加到10%有利于提高涂层的抗氧化能力。 粘结层抗氧化性能直接影响着热障涂层的使用寿命。不同于D-gun热障涂层的失效方式,AIP/D-gun热障涂层的失效寿命很大程度取决于涂层中形成一定临界尺寸的裂纹。AIP/D-gun 热障涂层的剥落失效发生在TGO中或粘结层/TGO界面,TGO氧化膜仍粘附在陶瓷层上;陶瓷层与粘结层界面处的缺陷导致陶瓷面层发生层状剥落。
其他摘要With the increasing inlet temperature of gas turbines, the development of TBCs is extremely important to enable modern gas-turbines to operate well at gas temperatures above the melting point of the superalloy. Nowadays, the aim is to prolong the lifetime, increase the inlet temperature and also reduce the cost of TBCs. Therefore, a better oxidation resistance of bond coats at high temperature, a lower thermal conductivity as well as a higher strain tolerance to spallation of YSZ top coat are the key problems to be solved in this thesis. TBCs were prepared, where NiCrAlY type coatings and ZrO2 stabilized by 8wt%Y2O3 with hollow spherical powder (HSP-YSZ) coating by detonation gun spraying (D-gun) were used for bond coats and top coats, respectively. The high-temperature oxidation properties of bond coats, thermal conductivity of HSP-YSZ and failure mechanism of thermal barrier coatings have been analyzed and discussed. Based on D-gun TBCs, a TBC system with a better thermal shock resistance was successfully obtained using AIP/D-gun two step method. The results indicated that NiCrAlY coatings obtained by D-gun spraying have good isothermal oxidation resistance at 1100˚C owing to the formation of -Al2O3 and Cr2O3 protective oxide scales on the surface. The oxidation kinetics followed the parabolic law. For D-gun NiCrAlY coatings after vacuum annealing, the formation of TiO2 due to the diffusion of Ti from the substrate alloy and NiO impaired the continuity of the protective scale, accelerating the oxidation and leading to failure. Size distributions of powders in a narrow range were beneficial to obtaining coatings with uniform porosity, microcracks and good adherence, thus the corresponding HSP-YSZ top coats exhibited an enhanced thermal shock resistance. D-gun sprayed HSP-YSZ coatings showed a dense, uniform and fine lamellar microstructure with some vertical and horizontal cracks which produced 10% porosity. HSP-YSZ coating was composed of the tetragonal and cubic phases, which is favorable to the stabilization of the coating at high temperature than the monoclinic phase found within the sprayed powders. D-gun HSP-YSZ coatings exhibited a low thermal conductivity of 0.8-1.2 W/m-K in the range from 200 to 1200˚C,resulting in a good thermal insulation to the substrate alloy. The failure mechanism of the D-gun sprayed TBCs was determined by means of thermal shock cycling, in other words, the TBCs were heated at 1100˚C and then quenched in water. The results showed the primary failure mechanism of D-gun TBCs involves the depletion of aluminum in the bond coat and formation of Ni/Cr non-alumina oxides within TGO layer at the bond coat/ceramic top coat interface. Undulation development induced micro-cracking at the YSZ/TGO interface and the formation of voids decrease the toughness between the TGO and YSZ. As a result of aluminum depletion in the bond coat, extensive cracking of the rapidly formed Ni/Cr oxides due to strain accumulation during cooling in turn aids to delamination of the outer ceramic layer and expected failure at the regions where chemical failure has occurred. Failure of the D-gun sprayed TBC starts with crack initiation along the splats boundary in the ceramic top coat and around the Ni/Cr oxides. The cracks propagate and coalesce with increasing thermal cycles which can induce wedge-shaped spalling areas in the ceramic coat. Compared with the oxidation of D-gun bond coats, bond coats deposited by AIP had an improved oxidation resistance at high temperature. The results also indicated that Al content increased from 8% to 10% can improve the oxidation properties. Therefore, Ni-32Co-20Cr-10Al-0.5Y-1Si-0.03B coating showed enhanced oxidation resistance compared with Ni-32Co-20Cr-8Al-0.5Y-1Si-0.03B coatings. Different from the failure mechanism of D-gun TBCs, the lifetime of AIP/D-gun TBCs is controlled by the initiation of a sub-critical interfacial crack. The AIP/D-gun TBCs failed at the weak interface of TGO/bond coat with some TGO adhered to YSZ top coat. Interfacial separations along the interface led to the lamellar spallation of TBC when cooling to room temperature.
页数143
语种中文
文献类型学位论文
条目标识符http://ir.imr.ac.cn/handle/321006/16941
专题中国科学院金属研究所
推荐引用方式
GB/T 7714
柯培玲. 爆炸喷涂热障涂层的抗热冲击行为及其失效机理的研究[D]. 金属研究所. 中国科学院金属研究所,2006.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[柯培玲]的文章
百度学术
百度学术中相似的文章
[柯培玲]的文章
必应学术
必应学术中相似的文章
[柯培玲]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。