IMR OpenIR
多孔NiTi形状记忆合金特性及生物相关基础的研究
其他题名Characteristics and Biomedical-interrelated Properties of Porous NiTi Shape Memory Alloy
姜海昌
学位类型博士
导师戎利建
2006-12-26
学位授予单位中国科学院金属研究所
学位授予地点金属研究所
学位专业材料加工工程
关键词多孔niti形状记忆合金 燃烧合成法 扫描云纹技术 阻尼性能 表面改性
摘要作为硬骨组织的替代,具备三维连通孔隙和较好生物相容性的多孔NiTi形状记忆合金有着广阔的应用前景。本文对燃烧合成制备的多孔NiTi形状记忆合金的孔隙分布、微观形变特征、相变特性、阻尼性能以及Ni释放行为等进行了系统的研究和分析,并对第三元素Mo添加后对多孔TiNi (Mo)合金性能的影响做了初步的探索。 原始粉末特性和合成工艺对多孔NiTi合金的孔隙结构具有显著的影响。只有在适宜的预热温度下才能利用燃烧合成法制备出孔隙形貌均匀,力学性能满足人体植入需要的多孔NiTi形状记忆合金。过低的预热温度形成各向异性严重的孔隙结构,而过高的预热温度将使多孔合金出现熔化区域。合适的Ti粉尺寸和含量也是获得均匀孔隙的重要条件之一。燃烧合成产物主要以B2相为主,还有部分Ni4Ti3相和包晶反应形成的Ti2Ni相。预热温度以及Ni含量的改变对合成后的多孔NiTi合金的相变温度影响不大。热循环次数的增加使多孔NiTi合金的相变温度略有降低。低温退火处理后的多孔NiTi合金中不仅存在独立的R相变,而且该相变的温度低于马氏体相变温度。高温退火后,多孔NiTi合金仍为一阶段相变,但由于富Ti间隙相的析出,相变温度和相变潜热均呈现下降的趋势。 利用扫描云纹技术分析了多孔NiTi合金的微观变形特性。在压缩过程中,多孔合金的孔壁同时承受压缩应力和剪切应力,孔壁尖角处的剪切应力集中产生的裂纹沿外加载荷方向成45°夹角扩展,最终使得孔隙发生坍塌,合金失效。在合金失效发生断裂的过程中,孔壁边缘处形成了高的应力集中,以滑移的方式发生了不可回复的塑性变形。而孔壁中心的变形较为均匀,断裂后发生的塑性变形较小。 多孔NiTi合金的内耗分为振幅无关内耗、迅速增加的振幅相关内耗和缓慢增加的振幅相关内耗。这些内耗分别来源于位错的弱钉扎和脱钉、微观塑性变形和马氏体界面的移动。应变振幅循环次数增加了多孔NiTi合金低应变振幅(<1×10-3)部分的内耗,而减小了高应变振幅(>1×10-3)部分的内耗。孔隙度的增加造成多孔合金的内耗变小。在低频范围内,多孔NiTi合金的内耗对频率不敏感,较高的频率使得合金容易发生疲劳断裂。未处理的多孔NiTi合金在冷却的过程中均出现一个内耗峰,对应于B2↔B19’相变。低温退火的多孔合金在加热和冷却的过程中均出现三个内耗峰,除了M相变峰和R相变峰之外,在更低的温度出现了一个与R相变相关的驰豫峰。 由于不规则孔隙的影响,多孔NiTi合金的Ni释放量远远大于相同表面积的致密态NiTi合金。在恒弯曲应力的作用下,Ni释放量增加明显。采用高温氧化和沉积羟基磷灰石层两种表面改性的方法可以有效地限制多孔NiTi合金的Ni释放。由于氧化层不够致密,高温氧化法只能限制部分的Ni释放。而利用一系列的化学处理后的多孔NiTi合金浸入到模拟体液五天后,不仅在孔壁,而且在孔壁的内侧均形成了连续的生物相容性的羟基磷灰石层。该层限制了多孔NiTi合金的溶出,增加了多孔NiTi合金的生物相容性。 采用Ni、Ti和Mo元素粉末充分混合后,通过燃烧合成方法制备出多孔TiNi(Mo)三元合金。由于固溶强化,少量Mo的添加改善了多孔NiTi合金的力学性能,但是过量Mo的加入使多孔合金的力学性能急剧下降。Mo的加入诱发多孔NiTi合金在冷却的过程中出现R相变。随着Mo含量的增加,多孔TiNiMo合金的相变温度呈现线性下降的趋势。当Mo含量大于1.1at%时,多孔NiTiMo合金的相变温度可以满足人体植入的需要。
其他摘要Biomedical porous NiTi shape memory alloy (SMA) will be widely used for the human body as implants for hard tissue due to its three-dimension connection pore and good biocompatibility. The biomedical interrelated properties, such as pore morphology, micro-deformation, phase transformation behavior, damping characteristics and Ni release behavior, of porous NiTi SMA fabricated by combustion synthesis (CS) have been investigated systemically in this paper. The research on the addition of Mo into porous TiNi (Mo) SMA has been carried out initially. Synthesis process and powder characteristics have a strong influence on the pore structure of porous NiTi SMA fabricated by CS method. Only under the appropriate preheating temperature, the porous NiTi alloy owns uniform pore structure and its mechanical properties could meet the demand for hard tissue implants. The combustion wave will not propagate steadily at a relative low preheating temperature and the anisotropic pore structure will create in porous NiTi alloy. However, if the preheating temperature is too high, the liquid phase will appear in the sample. As a result, the solid NiTi will exist in some region, and uniform porous structure cannot be obtained. The suitable size and content of Ti powder are also necessary factors in fabricating porous NiTi alloy with uniform pore structure. Besides the predominated phase (NiTi phase), there are several other intermetallic compounds in porous NiTi alloy, such as Ni4Ti3 phase and NiTi2 phase. Preheating temperature and content of Ni have no notable effect on the transformation temperatures of B2↔B19’ in the porous NiTi alloy. Transformation temperatures of porous NiTi alloy decrease slightly with an increasing number of thermal cycles. Low temperature annealing will induce R transformation in porous NiTi SMA. The results confirm that M phase transformation occur independently prior to R phase transformation on cooling. After high temperature annealing, porous NiTi SMAs exhibit one-step transformation, but the phase transformation temperature and latent heat are decreased due to the precipitation of Ti-rich phase. The micro-deformation characteristics of porous NiTi SMA under compression have been investigated using SEM moiré method. During the procedure of loading, the margin and center of pore wall endure both shear stress and compressive stress. The stress concentration is formed at the sharp-angled area of pore and induces the crack propagation from the margin of pore wall to the center along 45° angle with the loading direction. During the deformation, sliding deformation occurs at the margin of pore wall, however, the compressive and shear strain are slight at the center of pore wall. The internal friction of porous NiTi SMA can be divided into strain amplitude independence internal friction, rapid-increasing strain amplitude dependence internal friction and slow-increasing amplitude dependence internal friction, which mainly comes from pinning and unpinning of dislocation, micro-plasticity deformation and mobility of martensite interface. The cycles of strain amplitude increase the internal friction of porous NiTi SMA at low amplitude strain part (<1×10-3), however, decrease that of porous NiTi SMA at high amplitude strain part (>1×10-3). An increasing of porosity decreases the internal friction of the porous NiTi alloy. The internal friction of porous NiTi alloy is not sensitive to low frequency. However, the porous NiTi alloy fatigue fracture easily at high frequency. One internal friction peak associated with the B2↔B19’ transformation appears on as-received porous NiTi shape memory alloy. There are three peaks both on heating and on cooling for the porous NiTi SMA with low temperature annealing, which is corresponding to M transformation, R transformation and R phase induced relaxation peak respectively. Due to the irregular pore structure, the Ni release amount of porous NiTi alloy is much higher than that of the solid one with the same dimension. The Ni release amount increases obviously under the influence of the static bending strain. Two kinds of surface modification, high temperature oxidation and hydroxyapatite coating, are employed to restrain Ni out-diffusion from the porous NiTi alloy. High temperature oxidation can partially restrain Ni release. After a serials of chemical treatments and subsequent sample immersion in SBF for 5 days, a uniform hydroxyapatite layer forms, not only on the surface of the porous NiTi alloy, but also on the inside of the pores. This hydroxyapatite layer greatly decreases the amount of nickel release and improves the biocompatibility of the porous NiTi shape memory alloy. Porous TiNi(Mo) ternary SMA has been fabricated by the CS method with the mixture Ni, Ti and Mo powder. A small amount of Mo addition strengthens compressive properties of porous TiNiMo alloy due to solution strengthening. However, the compressive strength and compressive strain of porous TiNiMo alloy with excessive Mo decrease sharply. Mo addition induces the R-phase during the cooling and decreases the transformation temperatures of porous NiTi alloy and there is a near-linear relationship between Mo content and Af temperature of porous TiNi(Mo) alloy. The porous TiNiMo alloy with about 1.1at.%Mo content will be more suitable to be a hard tissue implant than the porous NiTi binary alloy according to the transformation temperature.
页数145
语种中文
文献类型学位论文
条目标识符http://ir.imr.ac.cn/handle/321006/16958
专题中国科学院金属研究所
推荐引用方式
GB/T 7714
姜海昌. 多孔NiTi形状记忆合金特性及生物相关基础的研究[D]. 金属研究所. 中国科学院金属研究所,2006.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[姜海昌]的文章
百度学术
百度学术中相似的文章
[姜海昌]的文章
必应学术
必应学术中相似的文章
[姜海昌]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。