IMR OpenIR
镁合金电镀锌工艺与机理研究
其他题名Study of Zinc Electroplating on Magnesium Alloy
李卓群
学位类型硕士
导师柯伟
2007-01-26
学位授予单位中国科学院金属研究所
学位授予地点金属研究所
学位专业材料学
关键词镁合金 电镀 浸锌 碱性锌酸盐镀锌 We54镁合金 腐蚀行为
摘要镁合金具有密度低、比强度高、易于压铸成型、可回收利用等一系列优点,已经在航空、航天、汽车、电子等行业得到应用。但是由于镁合金的耐腐蚀性差,其在民用工业中大规模应用仍受到限制。电镀锌工艺是一种传统的防护方法,常用于钢铁材料的表面防护,但对于镁合金而言,电镀锌却是一种全新的防护手段。 镁合金化学活泼性非常高,当接触空气时表面会迅速生成一层氧化膜,因此电镀前需要进行特殊的预处理才能得到结合力良好的镀层,预处理的质量与后续镀层的质量密切相关。本文首先深入地研究了镁合金电镀前浸锌法预处理工艺与机理。得到如下结果: 一 将传统浸锌法中浸蚀与活化步骤合二为一,开发出一种绿色环保高效的活化处理液,并通过实验确定出最佳活化时间为15s~30s; 二 系统地研究了活化过程中AZ91D镁合金内α相与β相表面状态的变化。活化过程中,α相与β相上均形成了一定厚度且带有显微裂纹的磷酸盐膜,该磷酸盐膜既可以保护合金不被进一步氧化又可以在浸锌过程中被迅速溶解,比传统的活化方法更高效; 三 深入研究了浸锌过程中AZ91D镁合金表面锌颗粒的生长过程。浸锌过程中锌颗粒的生长可大致分为三个阶段:第一阶段,活化过程中生成的磷酸盐膜迅速溶解同时锌颗粒在合金表面随机形核;第二阶段,锌颗粒在合金中α相与β相相界处以及β相上优先生长,且排列整齐致密;第三阶段,锌颗粒在未被覆盖的α相上继续生长,但生长方式为螺旋式生长,最终形成胞状结构。此外,通过浸锌过程电位时间曲线结合样品表面形貌分析,进一步验证了上述三个阶段。 四 通过实验筛选出了一种适用于镁合金浸锌工艺的表面活性剂,该表面活性剂可以有效地改善浸锌层不均匀的现象。 在研究镁合金电镀锌工艺的过程中,按照以下两条思路分别进行探索:一是从已有的无氰电镀锌溶液体系中筛选出一种适用于镁合金电镀锌的溶液体系,经过适当改进直接将其应用于镁合金电镀锌;二是开发一种专门针对于镁合金电镀锌的溶液体系,并筛选出与之适配的光亮剂与添加剂。 根据以上两条研究思路,一方面,通过大量实验筛选出碱性锌酸盐镀锌工艺,将其成功地应用于AZ91D镁合金表面电镀锌;另一方面,利用正交实验方法结合已有的经验,设计出一种专门针对于镁合金基体的电镀锌溶液体系,并确定出最佳工艺参数。 此外,本论文还对WE54合金腐蚀行为进行了研究。研究过程中,主要对比了WE54合金与AZ91D合金在腐蚀行为方面的差异,发现二者在电化学行为与腐蚀形貌上都存在较大的差别,这种差别主要由两方面原因引起,一方面为合金化学成分上的差别,另一方面则为合金组织结构上的差别。WE54合金中添加了大量的稀土元素,导致合金基体与第二相的化学与电化学活性都相对较高,因此腐蚀WE54合金的腐蚀电位较AZ91D合金的腐蚀电位低约200mV;而WE54合金的腐蚀形貌较平整,长时间腐蚀后仅在晶界处留下沟槽,α相的轮廓保持相对完整;而AZ91D合金的腐蚀则主要向合金内部纵深发展,最终仅留下β相的骨架状结构,从宏观上观察则为蜂窝状。
其他摘要Nowadays, magnesium alloys are extensively used in several areas such as aviation and automotive industry because of their low density, high strength/weight ratio and good castability. But the poor corrosion resistance of magnesium alloys severely limits their potential wide applications in more civil areas. Although zinc electroplating is an oldest way for metal’s protection, it is a relative new method for protecting magnesium alloys. Magnesium alloys have very high chemical reactivity and they are prone to form a passive oxide layer quickly in the air. Thus, a special pre-treatment is necessary before electroplating because the quality of the electroplating layer is determined by the quality of the pre-treatment. The mechanism of zinc immersion pre-treatment process on magnesium alloy is deeply investigated, and the experimental results are as follows: A new kind of activating solution which is more efficient and environmental than the traditional one was developed. And the change of the surface morphologies of the α phase and the β phase in the AZ91D magnesium alloy in the activating process was also investigated. During the activating process, a kind a phosphate film which contains numerous micro-cracks formed on both surface of the α phase and the β phase. This kind of phosphate film could not only prevent the further oxidation of the magnesium alloy, but could also be dissolved quickly in the coming zinc immersion process. The zinc immersion process could be divided into three distinct stages. In the first stage, the phosphate film formed in the activating process dissolved quickly and some zinc particles deposited on the surface of the alloy randomly; in the second stage, zinc particles which seemed much orderly than these random ones deposited on the phase boundary between the α phase and the β phase firstly and then on the β phase; in the third stage, zinc particles grew spirally on the uncovered α phase. There are also three stages which corresponded to the surface morphologies on the V-t curve of the zinc immersion process. Additionally, a kind of surfactant which could smoothes the zinc immersion layer was selected through numerous experiments. The zinc electroplating processes on AZ91D magnesium alloy were also investigate systematically. Firstly, we selected the alkaline cyanide-free zinc plating process from numerous zinc plating processes and applied it to electroplating of magnesium alloy successfully. Secondly, a new kind of electroplating process which is designed for magnesium alloy was developed and the optimum parameters were also achieved with orthogonal experiment. Additionally, the corrosion behavior of WE54 magnesium alloy was investigated in 3.5%NaCl aqueous solution. The electrochemical study showed that the value of corrosion potential of WE54 magnesium was –1.8V (Vsce). Through the comparison of corrosion behavior between WE54 and AZ91D, it was showed that the value of corrosion potential of WE54 was approximately 200mV lower than that of AZ91D, and the corrosion rate of WE54 was one order smaller than that of AZ91D. After 72 hours’ constant immersion and corrosion products removal, deeper grooves along grain boundaries was revealed but lighter corrosion was apparent on the matrix of WE54 alloy. As far as AZ91D alloy was concerned, severe localized corrosion was dominant and network-bone-like structure was remained.
页数67
语种中文
文献类型学位论文
条目标识符http://ir.imr.ac.cn/handle/321006/16972
专题中国科学院金属研究所
推荐引用方式
GB/T 7714
李卓群. 镁合金电镀锌工艺与机理研究[D]. 金属研究所. 中国科学院金属研究所,2007.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[李卓群]的文章
百度学术
百度学术中相似的文章
[李卓群]的文章
必应学术
必应学术中相似的文章
[李卓群]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。