IMR OpenIR
钛铝包套挤压的工艺控制和缺陷预测
其他题名Process Control and Defect Prediction during Canned Extrusion of Gamma TiAl
柏春光
学位类型博士
导师杨锐
2007-06-05
学位授予单位中国科学院金属研究所
学位授予地点金属研究所
学位专业材料学
关键词Tial包套挤压 间歇控制挤压 有限元方法 工艺控制 缺陷预测
摘要钛铝金属间化合物高温下具有保持高比刚度,高抗蠕变性能,高抗氧化性能和高比屈服强度的特点,在航空和汽车部件轻量化设计中有着非常大的优势。对于不同组织的钛铝合金,细小晶粒和细小片层间距的全片层组织具有优异的综合力学性能。高温挤压变形是钛铝开坯获得细小片层组织的主要方法。钛铝的加工温度范围窄,高温变形抗力高,包套技术的采用对钛铝坯料起到了保温和防护的作用,减小了挤压载荷,增加了可加工温度范围,但同时会引起挤压工件的变形不均匀问题。 包套挤压过程中的温度和变形不均匀一直是工艺控制的难点。温度不均匀会导致挤压制品的微观组织和力学性能的不均匀,而变形不均匀会导致钛铝坯料内部裂纹、包套断裂甚至钛铝制品断裂等缺陷。为避免出现挤压加工中的各种缺陷,必须对变形过程中的温度和变形的均匀性进行控制。本工作采用有限元方法对钛铝包套挤压过程进行数值模拟,分析影响温度和变形的各个参数和挤压工艺中的各个环节,从而改善钛铝包套挤压工艺中的温度和变形均匀性。 本文提出了隔热层和玻璃防护涂层的简化计算模型,并在此基础上对不同包套以及隔热层材料的选择和结构设计进行有限元分析,确定了不同包套材料情况下的温度分布和变形规律,对比了不同隔热层的隔热效果,提出了硅化物玻璃纤维棉的隔热效果优于氧化锆粉末,同时改进了包套和隔热层的结构设计,保证更加合理的温度场分布。通过模拟计算考察了包套厚度和强度匹配情况对变形均匀性的影响,提出包套的厚度需大于5 mm,钛铝坯料和包套之间的强度比在2-3之间是获得理想的均匀变形的基本条件。 通过对挤压温度、挤压速度、挤压比、间歇控制时间等工艺参数的分析和优化设计,制定了获得理想强度分布的间歇期时间控制方案。有限元分析的结果表明:挤压温度、挤压速度和挤压比等工艺参数对钛铝坯料的温度变化影响显著,挤压温度对变形均匀性的影响不大,而挤压速度较小、挤压比适中的工艺条件是获得变形均匀的挤压制品的有力保障。提高挤压筒和模具的预热温度以及在锭坯和挤压筒之间预留间隙可以有效地减小包套的温降。 对钛铝挤压的润滑工艺进行了有限元模拟,提出玻璃防护涂层的采用对挤压工件的转移和挤压过程起到了保温作用,同时优化润滑工艺,减小摩擦系数可以显著降低钛铝制品的断裂趋势。模拟结果显示,润滑状况良好时,挤出的制品未出现断裂的缺陷,同时整个制品外部的包套尺寸基本均匀;润滑状况不良时,摩擦系数为0.3和0.5等较大值时都存在着包套断裂的现象。 在实验中采用了优化后的工件结构设计, 1Cr18Ni9Ti和304SS作为包套材料,控制在空气中转移和挤压筒内停留时间,并通过后续润滑方案的改进,最终得到变形均匀的挤压制品。通过对1280oC和1310 oC下的挤压微观组织、挤压力载荷时间曲线以及挤压制品宏观变形尺寸与模拟结果的对比,验证了有限元模拟结果的可靠性。 采用有限元方法,不仅系统的认识了钛铝包套挤压过程的工艺参数和工件结构设计对温度分布和变形均匀性的影响,同时通过模拟结果的反馈,提出了工件设计和参数选择的改进方案,为后续的挤压实验方案的制定提供了一定的参考依据。
其他摘要TiAl intermetallics offer great potential application on aerospace structural and automobile components because of their high specific modulus, high creep resistant property, high oxidation resistant property and high specific yield stress at high temperatures. As for TiAl alloys with different microstructure, full lamellar microstructures with refined colony size and lamellar spacing have the best balanced mechanical properties. It can be obtained by the breakdown of as-cast microstructure with canned extrusion, which can prevent oxidation of the preform in air and insulate the core from die chilling. The main disadvantage with the technique involves nonuniform deformation during the extrusion process and removal of the sleeve after extrusion. It is all along a big question to obtain uniform temperature distribution and uniform deformation during canned extrusion of γ-TiAl. Non-uniformity of temperature distribution leads to inhomogeneous microstructure and different mechanical properties of the extruded bar, while non-uniform deformation of the workpiece can result in cracks in the billet, and sometimes fractures of the sleeve and the core. So it is necessary to control temperature distribution and flow pattern of the workpiece during the extrusion process. Finite element simulation is carried out to investigate the factors, which influence temperature distribution and flow uniformity, such as process parameters, workpiece design and lubrication condition. During the modeling process, simplified models were set up to calculate temperature distribution and deformation characteristics of the workpiece during the extrusion process. Finite element analysis is carried out to investigate the effect of selection and design of sleeve and insulating layers on the uniformity of temperature and deformation of the workpiece during the extrusion process. The simulation results show that silica fabric is better than ZrO2 powder as insulating material, and the geometry design of the sleeve and the insulator is modified to optimize temperature distribution of the workpiece. To obtain uniform deformation, thickness of the sleeve should be larger than 5mm and flow stress ratio between the sleeve and the core should be in the range of 1/2-1/3. Extrusion temperature, extrusion speed, extrusion ratio and controlled-dwell time are analyzed and optimized for better temperature distribution and uniform deformation of the workpiece. The simulation results show that extrusion temperature, extrusion speed and extrusion ratio have great effect on temperature increase because of heat generation of deformation, but have little effect on temperature decrease of TiAl billet. As for deformation aspect, extrusion temperature has little influence on flow uniformity, but low extrusion speed and appropriate extrusion ratio are critical to the successful extrudate. The improvement of preheating temperature of die tooling and interface gap between the container and the workpiece is beneficial to protect the workpiece from die chilling. Glass coating is proved to be effective on heat insulation of the workpiece. In good lubrication condition, no fracture of the extrudates occurs and the flow pattern is quite uniform. For ill-lubricated condition with friction coefficient of 0.3 and 0.5, fractures of the sleeve happen at different locations, and it agrees well with the experimental results. For the sleeve of stainless steel, the deformation process is quite steady and uniform if the transfer time and the extrusion time are minimized and the lubrication condition is improved. The finite element simulation results agree well with the experimental one at different extrusion temperature, which manifests that finite element method is a useful tool for process control and defect prediction, and the simulation results are meaningful to the design and control of the extrusion process for γ-TiAl.
页数136
语种中文
文献类型学位论文
条目标识符http://ir.imr.ac.cn/handle/321006/16991
专题中国科学院金属研究所
推荐引用方式
GB/T 7714
柏春光. 钛铝包套挤压的工艺控制和缺陷预测[D]. 金属研究所. 中国科学院金属研究所,2007.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[柏春光]的文章
百度学术
百度学术中相似的文章
[柏春光]的文章
必应学术
必应学术中相似的文章
[柏春光]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。