IMR OpenIR
Ti3SiC2的强化与力学性能评价方法
其他题名Strengthening of Ti3SiC2 and Mechanical Properties Evaluation Method
万德田
学位类型博士
导师包亦望
2007-06-08
学位授予单位中国科学院金属研究所
学位授予地点金属研究所
学位专业材料学
关键词Ti3si(Al)C2/sic复合材料 (Tizr)3(Sial)C2/(Zrti)C复合材料 Al2o3/ti3sic2/al2o3层状复合材料 单边斜缺口梁法 强化机制
摘要三元层状可加工陶瓷Ti3SiC2综合了金属和陶瓷的许多优点,如低密度、高模量、高韧性、良好的导电和导热性、抗损伤容限好、良好的抗热震性和在1100 oC之下抗氧化性能好。因此,Ti3SiC2是一种非常有潜力的高温结构材料。然而,Ti3SiC2的硬度低,耐磨性差、接触损伤阻力差以及在1100 oC之上抗氧化性能比较差,严重限制了它的广泛应用。为充分挖掘材料潜力,本工作的研究目的是:在力争保留Ti3SiC2的低密度、高模量和导电导热等优点的同时,对其进行了强化处理。强化的方法是通过制备颗粒增强型复合材料和层状材料来强化Ti3SiC2。此外,由于断裂韧性是评价陶瓷材料性能中最重要的指标之一,本文提供了一种简单、准确而且可靠的评价方法。 首先,以Ti、Si、Al和石墨为原料,采用原位热压/固-液相反应方法合成了不同SiC含量的Ti3Si(Al)C2/SiC复合材料。系统研究了SiC颗粒的存在对材料显微结构、室温和高温力学性能、摩擦磨损性能和高温抗氧化性能的影响。由于SiC颗粒的钉扎作用,Ti3Si(Al)C2的晶粒尺寸随着SiC含量的增加而减小。SiC颗粒的加入提高了材料的弹性模量、硬度、断裂韧性、剪切强度、接触损伤阻力、耐磨性和高温抗氧化性能,但材料的弯曲强度却随着SiC含量的增加而单调下降。复合材料性能提高主要是由于硬质SiC颗粒的贡献,而弯曲强度下降主要是在基体Ti3Si(Al)C2中的残余拉应力的作用。 原位制备了不同(ZrTi)C含量的(TiZr)3(SiAl)C2/(ZrTi)C复合材料。(ZrTi)C颗粒的存在明显降低了(TiZr)3(SiAl)C2的晶粒尺寸。(ZrTi)C颗粒的加入提高了材料的弹性模量、硬度和弯曲强度。断裂韧性在(ZrTi)C 含量为10 vol.%时达到最高。讨论了强韧化机制。根据高温弹性模量和高温弯曲强度的测试结果,复合材料在空气中的使用温度应控制在600 oC之下,而在真空环境中的使用温度可以达到1300 oC。 通过制备Al2O3/Ti3SiC2/Al2O3三明治层状复合材料来强化Ti3SiC2。当Al2O3层与基体Ti3SiC2层的层厚比为0.10时,复合材料的最大强度比单相Ti3SiC2的强度提高了14.5%。复合材料的表面硬度因为表层Al2O3的高硬度而大幅度提高。Ti3SiC2层和Al2O3层之间形成强界面的原因是由于在制备过程中产生的Si和Ti-Si液相渗透到Al2O3层中而形成了一个中间层的缘故。基于等效刚度和三点弯曲模型,提出了一种改进的相对法,可以用来评价非对称型三明治复合材料涂层的弹性模量和强度。 采用“山形”缺口法研究了晶粒尺寸、缺口宽度以及测试温度对Ti3Si(Al)C2和Ti3AlC2的断裂韧性的影响。在同样的缺口宽度和实验温度下,粗晶样品比细晶样品的断裂韧性高。临界缺口宽度为250 m。Ti3Si(Al)C2和Ti3AlC2的高温断裂韧性在韧脆转变温度(1100 oC)之前对实验温度并不敏感,但在韧脆转变温度之后,断裂韧性却急剧下降。高温断裂韧性的下降主要原因是由于在韧脆转变温度之后材料的弹性模量急剧下降的缘故。 提出了一种评价陶瓷材料断裂韧性的新方法-单边斜缺口梁法。在假设斜缺口样品的柔度随裂纹扩展相对长度变化所产生的偏差与直通缺口样品是一样的条件下,根据断裂力学中的能量平衡法提出了陶瓷材料断裂韧性的计算公式。断裂韧性可以直接由最大载荷计算所得,而不需要测量裂纹的长度。以Ti3Si(Al)C2和Al2O3为测试材料,采用单边斜缺口梁法和“山形”缺口法测量所得的断裂韧性吻合的很好,且与单边切口梁法的测量结果相近,证实了单边斜缺口梁法是一种简单而且有效的方法。
其他摘要Layered ternary carbide Ti3SiC2 processes unique properties combining excellent characteristics of metals and ceramics such as low density, high modulus and fracture toughness, high electrical and thermal conductivity, good machinability, damage tolerance at room temperature, and good resistance to thermal shock and oxidation below 1100 oC. However, the low hardness, poor wear and strength impairing contact damage resistance, and unsatisfied oxidation resistance above1100 oC limit the application of Ti3SiC2 as high-temperature structural components. In this dissertation, Ti3SiC2 was strengthened to wide its application field with a qualification of keeping its merits such as low density, high modulus, and high electrical and thermal conductivity. The methods used are by forming particulate reinforcement composite and sandwich composite to strengthen Ti3SiC2. Furthermore, because fracture toughness is one of the most important material properties in fracture mechanics for ceramic materials, we suggest a new, simple, and reliable method to evaluate the toughness of ceramic materials. Ti3Si(Al)C2/SiC composites were fabricated by the in situ hot pressing/solid-liquid reaction synthesis process from elemental powders of Ti, Si, Al, and graphite. The effects of SiC on the microstructure, mechanical properties at room and high temperatures, and wear and oxidation resistance were systemically investigated. Because the grain growth of Ti3Si(Al)C2 is inhibited by the presence of SiC through a pinning mechanism, the grain size of Ti3Si(Al)C2 is decreased with increasing SiC content in the composites. Compared with monolithic Ti3Si(Al)C2, the Ti3Si(Al)C2/SiC composites exhibit higher elastic modulus, Vickers hardness, fracture toughness, shear strength, contact damage resistance, improved wear and oxidation resistance, but have a slight loss in flexural strength. The enhancement of the properties of Ti3Si(Al)C2 is mainly ascribed to the excellent properties of SiC particles, and the strength degradation is due to the tensile stress in the Ti3Si(Al)C2 matrix. (TiZr)3(SiAl)C2/(ZrTi)C composites were in situ synthesized from elemental powders of Ti, Zr, Si, Al, and graphite. The grain size of (TiZr)3Si(Al)C2 is decreased with increasing (ZrTi)C content in the composites. The addition of (ZrTi)C particles increases the elastic modulus, hardness, and flexural strength. The fracture toughness reaches the highest value in (TiZr)3(SiAl)C2/10 vol.% (ZrTi)C composite. The strengthening and toughening mechanisms were discussed. Based on the measured high-temperature mechanical properties, the suitable temperature of the composites used in air should be below 600 oC. But in high vacuum, it is up to 1300 oC. The Al2O3/Ti3SiC2/Al2O3 sandwich composites with strong interfaces were in situ fabricated to strengthen Ti3SiC2. The obtained maximum strength of the sandwich sample was 14.5% higher than that of monolithic Ti3SiC2 when the optimum ratio of the Al2O3 coating thickness to the substrate thickness was 0.10, which agreed well with the calculated (0.087). The hardness of the surface was greatly improved because of the high hardness of Al2O3. The mechanism for the strong interface between the Ti3SiC2 and Al2O3 layer is due to the fact that the Si and Ti-Si liquid phases are formed and penetrate into the Al2O3 layers during the fabrication process. Based on the concepts of equivalent stiffness and three-point bending model, a modified relative method was derived to calculate the elastic modulus and strength of the unsymmetrical coating on the substrate. The effects of grain size, notch width, and testing temperature on the fracture toughness of Ti3Si(Al)C2 and Ti3AlC2, were investigated using the chevron notched beam (CNB) method. For a fixed notch width and testing temperature, the fracture toughness of coarse-grained samples is higher than that of fined-grained samples. The critical notch width for valid KIC measurements of this kind of quasi-plastic ceramic is about 250 m. The high-temperature toughness of Ti3Si(Al)C2 and Ti3AlC2 with different grain sizes are insensitive to the testing temperatures before the brittle-ductile transition temperature (DBTT) (about 1100 oC), but it declines fast over 1100 oC. The degradation of the fracture toughness is mainly imputed to the decline of elastic modulus at temperatures above DBTT. A new and simple method named single gradient-notched beam (SGNB) method was introduced to determine the fracture toughness of ceramic materials. Fracture toughness KIC can be calculated from the maximum load and shape factor under the assumption that the derivative of the compliance for a specimen with a gradient notch with respect to the relative length is the same as that for a specimen with a straight through crack. Using Ti3Si(Al)C2 and Al2O3 as the testing samples, the agreement among the KIC values obtained from the SGNB method, from the chevron notched beam method (CNB), and those from the single edge notched beam method (SENB) for the same notch width samples, demonstrates that the SGNB method is a simple and reliable method for fracture toughness determination of ceramics.
页数216
语种中文
文献类型学位论文
条目标识符http://ir.imr.ac.cn/handle/321006/17000
专题中国科学院金属研究所
推荐引用方式
GB/T 7714
万德田. Ti3SiC2的强化与力学性能评价方法[D]. 金属研究所. 中国科学院金属研究所,2007.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[万德田]的文章
百度学术
百度学术中相似的文章
[万德田]的文章
必应学术
必应学术中相似的文章
[万德田]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。